Return to search

APPLICATION OF THE MIXING CELL MODEL TO THE QUANTIFICATION OF GROUNDWATER â SURFACE WATER INTERACTION

The significance of a reliable groundwater resource assessment is of growing importance as water resources are stretched to accommodate the growing population. An essential component of a groundwater resource assessment is the quantification of surface water â groundwater interaction. The insufficient amount of data in South Africa and the apparent lack of accuracy of current estimates of the groundwater component of baseflow lead to the investigation of a new methodology. The applicability of the Mixing Cell Model (MCM) to quantify the groundwater contribution to baseflow is examined to determine whether the method would be of use in groundwater resource assessments. The MCM simultaneously solves water and solute mass balances to determine unknown inflows to a system, in this application the groundwater component of baseflow. The incorporation of water quality data into the estimation of the surface water â groundwater interaction increases the use of available data, and thus has the ability to decrease the uncertainty of the estimation process. The balance equations are equated to an error term which is used in the quadratic programming solution of minimizing the square error sums in order to determine the unknown inflows. The mixing cell model is applied to datasets from the surface water â groundwater interaction test site developed by the University of the Free State, in addition to data collected along the middle Modder River during a fieldwork survey. The MCM is subsequently applied to a set of quaternary catchments in the Limpopo Province for which there are available calibrated estimates of the groundwater component of baseflow for the Sami and Hughes models. The MCM is further applied to the quaternary catchment D73F, located in the semi-arid Northern Cape, to assess the applicability of the mathematically based MCM in terms of a flow system located within a regionally-defined zero groundwater baseflow zone. The MCM results for each study area are assessed in comparison to groundwater baseflow volumes determined by the Pitman, Sami and Hughes models. A chemical hydrograph separation method which also incorporates water quality data is additionally reported for the study areas to further validate the MCM. The results indicate that the mixing cell model can reliably estimate the groundwater component of baseflow to a river. This application of the mixing cell model could contribute to increase and evaluate the accuracy of current groundwater baseflow estimates in South Africa, which will in turn ensure the responsible and sustainable use of the countries water resources.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ufs/oai:etd.uovs.ac.za:etd-08072014-104255
Date07 August 2014
CreatorsMatthews, Amy Jane
ContributorsProf GJ van Tonder, Prof JT Witthüser
PublisherUniversity of the Free State
Source SetsSouth African National ETD Portal
Languageen-uk
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.uovs.ac.za//theses/available/etd-08072014-104255/restricted/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University Free State or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0015 seconds