Return to search

Unified Model of Charge Transport in Insulating Polymeric Materials

Charge transport, charging, and subsequent electrostatic discharge due to interactions with the space environment are primary concerns of spacecraft designers. Developing a physical understanding of the interactions of charge with the multitude of materials that spacecraft are composed of is a critical step in understanding and mitigating both short-term and long-term spacecraft degradation. In particular, the study of charge transport in highly insulating materials is critical as they store charge longer, with higher capacity, and with greater destructive capability than other materials.The Utah State University Materials Physics Group, with the funding of the NASA James Webb Space Telescope project and Rocky Mountain Space Consortium, have developed a complete and consistent theoretical model that predicts short-term and long-term storage capabilities based on physical material parameters. This model is applicable across a wide range of experimental systems designed to test specific behaviors that characterize charging phenomena.Modeling and understanding the complex relationships between the spacecraft and its surroundings are fundamentally based on detailed knowledge of how individual materials store and transport charge. The ability to better understand these effects will help make exploring the edges of the universe more stable, reliable, and economic.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-3047
Date01 December 2013
CreatorsSim, Alec
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.002 seconds