Return to search

Resistive Electrical Field Grading of Insulation Oil-Solid Interfaces

There is always a need for more compact designs of power transformers free of partial discharges, in order to save cost on the construction and required material resources. The physical geometric constrictions inside the transformer tank would demand field-grading techniques to homogenise the field strength distribution on oil-solid interfaces, when required. Standard filler materials such as carbon black or silicon carbide (SiC) have a too high electrical conductivity yielding an appropriate grading field strength values for air-related applications. Because insulation oil has a higher electrical breakdown strength, the electrical conductivity must be engineered to lower values in order to reach a higher effective grading field strength. This paper presents the investigation of a new material system based on a phenolic resin Lerg FL-500 and the electrically functionalized ceramic filler particles Merck IriotecĀ®7550 that enable a resistive electrical field grading in insulation oil. In order to verify the principle functionality of the proposed field grading system, a layer is applied on a substrate surface representing possible oil-solid-interface inside oil-filled power transformers. First, the manuscript describes the methods of specimen preparation and the measurement of the nonlinear current-time behaviour under AC voltage stress for different filler contents. Second, a concurring optical and electrical determination of the partial discharge inception and extinction voltage of a modified Toepler arrangement allows the indirect determination of the electrical field strength distribution along the functionalized layer without the need of direct measurement. To do so, the radius of the circular functional layer is varied and with it the specific grading length. In analogy to state of the art SiC-filled systems, a linear dependency between the effective grading length and the PD inception voltage is observed. The quotient of voltage drop over a varied radius yields the effective graded electric field strength.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:78264
Date02 March 2022
CreatorsBackhaus, Karsten, Bauer, Johann
PublisherVDE Bezirksverein Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds