Return to search

Effect of Chemical Impurities on the Solid State Physics of Polyethylene

Computational quantum mechanics in the frame work of density functional theory (DFT) was used to investigate the effect of chemical impurities on high field conduction in polyethylene (PE). The impurity states in the band gap caused by common chemical impurities were characterized in terms of their “depth”, i.e. energy relative to their relevant band edge (valence band or conduction band), and in terms of the extent to which their wavefunctions were localized to a single polymer chain or extended across chains. It was found that impurity states can affect high field phenomena by providing “traps” for carriers, the depths of which were computed from first principle in agreement with estimates in literature. Since the square of the wavefunction is proportional to the spatial electron probability density, transfer of charge between chains requires wavefunctions which are extended across chains. Impurity states which are extended between chains can facilitate the inherently limited interchain charge transfer in PE, as the DFT study of iodine doped PE revealed.
The introduction of iodine into PE increases conductivity by several orders of magnitude, increases hole mobility to a much greater extent than electron mobility, and decreases the activation energy of conduction from about 1 eV to about 0.8 eV. These characteristics were explained in terms of the impurity states introduced by iodine and wavefunctions of those states. Understanding the effect of iodine on conduction in PE provided a basis for understanding the effect of common chemical impurities on conduction therein. In particular, carbonyl and vinyl impurities create states which should promote hole mobility in a manner very similar to that caused by iodine. It was demonstrated that in the context of high field conduction in PE, besides the traditional focus on the depth of impurity states, it is important to study the spatial features of the states wavefunctions which are neither discussed nor accounted for in present models.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/31787
Date09 January 2012
CreatorsHuzayyin, Ahmed
ContributorsBoggs, Steven, Iravani, Mohammad Reza
Source SetsUniversity of Toronto
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds