Return to search

Modelování vazby variant insulinu k insulinovému receptoru díky průlomům ve strukturní biologii / Modelling Binding of Insulin Variants toward Insulin Receptor Based on Recent Structural Breakthroughs

Insulin receptor is a multi-domain signalling protein acting as a dimer. It comprises an extracellular ectodomain, a transmembrane domain and intracellular tyrosine kinase domain. Upon insulin binding, conformational changes in insulin as well as in insulin receptor occur and trigger the signaling cascade via the kinase domain. Abnormalities in insulin and insulin receptor function cause diabetes mellitus, a widespread disorder which can be consequence of genetic factors as well as lifestyle and is manifested by increased level of blood glucose. A common treatment of diabetes mellitus is via insulin analogues with different molecular properties. Insulin/insulin receptor interactions in the binding pocket are divided into two groups, so-called "site1" and "site2". The molecular details of the interactions in site1 are well known, while site2 residues are still not completely elucidated. It is important to shed light on the binding properties of insulin and insulin receptor, especially site2 interactions, because it could contribute to improved design of new insulin analogues. In this work, we used the very recent breakthroughs in the structural biology of insulin receptor to study the interactions by computational chemistry methods. It was thus possible to assess the noncovalent interactions and...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:403362
Date January 2019
CreatorsČerneková, Michaela
ContributorsLepšík, Martin, Biedermannová, Lada
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0019 seconds