Les innovations actuelles en électronique allient à la fois des critères de coût, de performance et de taille. Or à l'ère du tout numérique, les technologies CMOS sont confrontées à la stagnation de leurs performances électriques. Parallèlement, les systèmes hétérogènes multifonctions s'orientent vers une complexification extrême de leurs architectures, augmentant leur coût de conception. Les problématiques de performance électrique et d'hétérogénéité convergent vers un objectif commun. Une solution industriellement viable pour atteindre cet objectif d'architecture ultime est l'intégration tridimensionnelle de circuits intégrés. En empilant verticalement des circuits classiques aux fonctionnalités diverses, cette architecture ouvre la voie à des systèmes multifonctions miniaturisés dont les performances électriques sont meilleures que l'existant. Néanmoins, les technologies CMOS ne sont pas conçues pour être intégrées dans une architecture 3D. Cette thèse de doctorat s'intéresse à évaluer toute forme d'impact engendré par les technologies d'intégration 3D sur les performances électriques des composants CMOS. Ces impacts sont classifiés en deux familles d'origine thermomécanique et électrique. Une étude exploratoire réalisée par modélisation TCAD a permis de montrer l'existence d'un couplage électrique par le substrat provoqué par les structures d'intégration 3D dont l'influence s'avère non négligeable pour les technologies CMOS. La seconde partie de l'étude porte sur la mise en œuvre et le test de circuits conçus pour quantifier ces phénomènes d'interaction thermomécanique et électrique, et leur impact sur les performances de transistors et d'oscillateurs en anneau.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00441653 |
Date | 20 November 2009 |
Creators | Rousseau, Maxime |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds