Return to search

Uma abordagem geométrica para princípios de localização de integrais funcionais

Made available in DSpace on 2016-05-17T16:50:53Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-03-16. Added 1 bitstream(s) on 2016-05-17T16:54:31Z : No. of bitstreams: 1
000855888.pdf: 673100 bytes, checksum: f6c50190e13c6931b1a9076b72d32787 (MD5) / Apresentamos nesta dissertação uma revisão dos conceitos de geometria diferencial, onde estamos interessados em definir campos vetoriais que geram transformações de um parâmetro, formas diferenciais, variedades simpléticas e fibrados. Além disso, detalhamos o conceito de cohomologia de De Rham, o qual nos fornece uma ferramenta algébrica fundamental para analisar propriedades topológicas das variedades. A combinação desses conceitos, os quais suportam o nosso trabalho, permite-nos desenvolver teorias de localização equivariante de integrais definidas sobre espaços de fase clássicos, os quais também podem ser uma órbita co-adjunta. A localização é possível devido ao teorema de Duistermaat-Heckman, o qual nos permite escrever integrais como uma soma, ou integral, sobre o conjunto dos pontos críticos do espaço. Em seguida fazemos uma extensão para teorias de localização de integrais funcionais, onde é preciso definir o espaço dos loops. Nesse contexto aplicamos a formulação de localização equivariante tendo como base a conjectura de Atiyah-Witten para teorias supersimétricas, onde derivamos o teorema de índice de Atiyah-Singer para um operador de Dirac. O teorema de índice é aplicado no cálculo da anomalia quiral / We present in this dissertation a conceptual review of differential geometry, where we are interested in defining vector fields which are one-parameter transformation generators, differential forms, symplectic manifolds, and fiber bundles. In addition, we detail the concept about De Rham's cohomology, which provides us a fundamental algebraic tool to analyze topological properties of manifolds. The combination of these concepts, which are the background material of our work, allows us to develop equivariant localization theories of integrals defined on classical phase spaces, which can also be a co-adjoint orbit. The localization is possible because of the Duistermaat-Heckman theorem, which allows us to write integrals on the whole space just as a sum, or integral, on a critical points set. Further more, we do an extension to functional integrals localization theories, where it is needed to define loop spaces. In this context we apply equivariant localization formulation having the bases of Atiyah-Witten conjecture to supersymmetric theories, where we derive the Atiyah-Singer index theorem for a Dirac operator. The index theorem is applied to chiral anomaly calculation

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/138361
Date16 March 2007
CreatorsDias, M. A [UNESP]
ContributorsUniversidade Estadual Paulista (UNESP), Ribeiro, Maria Cristina Batoni Abdalla [UNESP], Bytsenko, Andrey Alexandrovich [UNESP]
PublisherUniversidade Estadual Paulista (UNESP)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatv, 110 f. : il.
SourceAleph, reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP
Rightsinfo:eu-repo/semantics/openAccess
Relation-1, -1, -1

Page generated in 0.0023 seconds