Return to search

Integrais concentradas na fronteira e aplicações para problemas elípticos semilineares / Concentrating integrals and applications for semilinear elliptic problems

Neste trabalho estudamos propriedades de integrais concentradas, ou seja, integrais cujo integrando atua apenas em uma vizinhança do domínio em questão. Tais termos são utilizados para conhecer o comportamento do integrando em regiões cuja medida de Lebesgue se aproxima de zero quando um parâmetro tende a zero. Ilustraremos estes resultados abstratos através de duas aplicações, ambas em domínios Lipschitz de R2, onde adicionamos um termo de concentração em problemas semilineares elípticos: domínio com fronteira oscilante que tende a um domínio limite fixo; e domínio do tipo fino com fronteira oscilante. Em ambos os casos, provamos a semicontinuidade superior e inferior da família de soluções dos problemas. / In this work we study concentrating integrals properties, in other words, we analyze integrals which function that is been integrated acts only in a neighborhood of the boundary of the domain. Such terms are use to know the behaviour of the integrand in regions which Lebesgue measure tends to zero when a parameter goes to zero. We will illustrate these abstract results through two applications, both in Lipschitz domains of R2, where we add a concentration term in semi linear elliptic problems: oscillating boundary domain which tends to a fixed limit domain; and a thin domain with a oscillatory boundary. In both cases we prove the upper and lower semicontinuity of the family of solutions from these problems.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06122017-104037
Date09 August 2017
CreatorsNogueira, Ariadne
ContributorsAlgarra, José María Arrieta, Pereira, Marcone Corrêa
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0013 seconds