In this thesis, we study integral representations of Herglotz-Nevanlinna functions, that is to say holomorphic functions defined on a product of several copies of the complex upper half-plane having non-negative imaginary part. The manuscript is divided into three parts, beginning with a general introduction followed by two papers. In the general introduction, we familiarize ourselves with the concept of a Herglotz-Nevanlinna function as well as providing a comprehensive introduction into the theory of integral representations for this particular class of functions. Paper I treats exclusively the two-variable case and presents an integral representation of Herglotz-Nevanlinna functions in two complex variables in terms of a real number, two non-negative numbers and a positive Borel measure satisfying two properties. Three properties that hold for the class of measures appearing in such integral representations are also proven. In Paper II, we provide an integral representation for the class of Herglotz-Nevanlinna functions in arbitrarily many complex variables in terms of a real number, a linear term and a positive Borel measure satisfying two properties. Properties of the class of measures appearing in this representation are then discussed in detail as well as alternative descriptions of said class. Finally, a symmetry formula satisfied by Herglotz-Nevanlinna functions is proved at the end.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-138962 |
Date | January 2017 |
Creators | Nedic, Mitja |
Publisher | Stockholms universitet, Matematiska institutionen, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, monograph, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds