Return to search

High-frequency Analog Voltage Converter Design

For many high-speed, high-performance circuits, purely differential inputs are needed. This project focuses on building high-speed voltage converters which can transfer a single-ended signal to a purely differential signal, or a differential input signal to a single-ended signal. Operational transconductance amplifier (OTAs) techniques are widely used in high-speed continuous-time integrated analog signal processing (ASP) circuits because resistors, inductors, integrators, buffers, multipliers and filters can be built by OT As and capacitors. Taking advantage of OT As, very-high-speed voltage converters are designed in CMOS technology. These converters can work in a frequency range from DC (OHz) up to lOOMHz and higher, and keep low distortion over a± 0.5V input range. They can replace transformers so that designing fully integrated differential circuits becomes possible. The designs are based on a MOSIS 2μm n-well process. SPICE simulations of these designs are given. The circuit was laid out with MAGIC layout tools and fabricated through MOSIS. The chip was measured at PSU and Intel circuit labs and the experimental results show the correctness of the designs.

Identiferoai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-5963
Date04 May 1994
CreatorsXu, Ping
PublisherPDXScholar
Source SetsPortland State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations and Theses

Page generated in 0.0019 seconds