Return to search

Analysing the Interactions between Water-induced Soil Erosion and Shallow Landslides

Water-induced soil erosion and shallow landslides interact with each other and need to be studied in an integrated approach to understand hillslope sediment yields. The principal aim of this thesis was to study and model soil erosion and shallow landslides in an integrated way. The thesis presents results from laboratory and catchment-scale studies and modelling.

A laboratory flume under a rainfall simulator was used for shallow landslide and soil erosion experiments using sandy and silty loess soils. In the experiments, landslide initiation, retrogressions and slip surface depths were measured and monitored directly or by using video camera recordings. Sediment and runoff were collected from the flume outlet every minute during landslides and every 10 minutes before and after landslides. Changes in the soil slope, after landslides, were recorded. Initially, six experiments including two repetitions were conducted using sandy soils at a 30º and 10º compound slope configuration, but with different soil profile depths. The experimental results showed that total and landslide-driven sediment yields were affected by the original soil profile depth; the greater the depth, the higher the sediment yield. Later, twelve other experiments were conducted on different slopes using silty loess soils. The experimental observations were used to validate an integrated modelling approach which includes WEPP for runoff and soil erosion modelling, a slope stability model for simulating shallow landslides, and a simple soil redistribution model for runout distance prediction. The model predictions were in good alignment with the observations. In all (sandy and silty loess) experiments, peak sediment discharges were related to the landslide events, proximity to the outlet and landslide volume. The post-failure soil erosion rate decreased as a function of changes in the slope profile.

The GeoWEPP-SLIP modelling approach was proposed for catchment-scale modelling. The approach simulates soil erosion using the Hillslope and Flowpath methods in WEPP, predicts shallow landslides using a slope stability model coupled with the WEPP’s hillslope hydrology and finally uses a simple rule-based soil redistribution model to predict runout distance and post-failure topography. A case study application of the model to the Bowenvale research catchment (300 ha) showed that the model predictions were in good agreement with the observed values. However, the Hillslope method over-predicted the outlet sediment yield due to the computational weighting involved in the method. The Hillslope method predicted consistent values of sediment yield and soil erosion regardless to the changes in topography and land-cover in the post-failure scenarios. The Flowpath method, on the other hand, predicted higher values of sediment yield in the post-failure vegetation removal scenario. The effects of DEM resolution on the approach were evaluated using four different resolutions. Statistical analyses for all methods and resolutions were performed by comparing the predicted versus measured runoff and sediment yield from the catchment outlet and the spatial distribution of shallow landslides. Results showed that changes in resolution did not significantly alter the sediment yield and runoff between the pre- and post-failure scenarios at the catchment outlet using the Hillslope method. However, the Flowpath method predicted higher hillslope sediment yields at a coarser resolution level. Similarly, larger landslide areas and volumes were predicted for coarser resolutions whereas deposition volume decreased with the increase in grid-cell size due to changes in slope and flowpath distributions. The research conducted in the laboratory and catchment presented in this thesis helped understand the interactions between shallow landslides and soil erosion in an integrated approach.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/5194
Date January 2011
CreatorsAcharya, Govind
PublisherUniversity of Canterbury. Department of Civil and Natural Resources Engineering
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Govind Acharya, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0021 seconds