Return to search

Nonlinear optics in titanium dioxide: from bulk to integrated optical devices

In this thesis, we explore titanium dioxide (TiO2) for ultrafast, on-chip nonlinear optics by studying it in bulk, thin films, and in integrated nonlinear optical devices. TiO2's large nonlinear index of refraction (30 times that of silica) and low two-photon absorption can enable all-optical switching, logic, and wavelength conversion across wavelengths spanning the telecommunications octave (800–1600 nm). In addition, its high linear index of refraction can enhance optical confinement down to nano-scale dimensions and facilitate the tight waveguide bends necessary for dense on-chip integration. Throughout this thesis, we develop TiO2 as a novel on-chip nonlinear optics platform. / Engineering and Applied Sciences

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/11181139
Date18 October 2013
CreatorsEvans, Christopher Courtney
ContributorsMazur, Eric
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0025 seconds