Submitted by Alice Araujo (alice.caraujo@ufpe.br) on 2018-04-13T21:15:35Z
No. of bitstreams: 1
TESE Ryan Ribeiro de Azevedo.pdf: 5788437 bytes, checksum: e699d3b5b7abb47ba1cb965d8c220e0e (MD5) / Made available in DSpace on 2018-04-13T21:15:35Z (GMT). No. of bitstreams: 1
TESE Ryan Ribeiro de Azevedo.pdf: 5788437 bytes, checksum: e699d3b5b7abb47ba1cb965d8c220e0e (MD5)
Previous issue date: 2015-03-09 / CNPQ / Abordagens baseadas em Processamento de Linguagem Natural, a exemplo de sistemas de diálogos – os quais funcionam respondendo de maneira breve e superficial a perguntas realizadas pelos usuários –, assim como, os sistemas baseados em técnicas de Aprendizado de Ontologias, utilizados para construção semi-automática de ontologias a partir de texto, são largamente encontrados na Web e possuem capacidade de realizar raciocínio automático, bem como, representar conhecimento. Estas capacidades – as de raciocinar e representar conhecimento - são questionáveis e consideradas como limitadas. Este quadro situacional leva nossa exploração a um novo paradigma de sistemas de diálogo, qual seja: um sistema que dialoga, aprende por dedução e representa conhecimento em Lógica de Descrições de múltiplos domínios. Desenvolver um sistema de diálogo inteligente, batizado como Renan, concebido para a criação semi-automática de ontologias – que interage com usuários em linguagem natural, formalizando e codificando conhecimento em lógica de descrições e, principlamente, com capacidade de aprender e de realizar raciocínio automático, a partir dessas interações com os usuários – pode consistir numa solução viável e efetiva na automatização do processo de construção de ontologias expressívas e de boa qualidade. Os resultados alcançados demonstraram que Renan consiste em uma solução eficiente para: (1) Representação de Conhecimento; portanto, formaliza e modela domínios de conhecimento em uma linguagem expressiva e padrão da Web Semântica, a partir de interações em linguagem natural controlada com usuários. (2) Raciocínio Automático; a abordagem permite que novos fatos sejam deduzidos a partir de outros, realizando raciocínio de subsunção, bem como, de inconsistências, verificando fatos contraditórios nas bases de conhecimento construídas durante as interações com seus usuários. Renan, contribui para com o avanço do estado da arte provendo, portanto, uma solução adequada e efetiva na construção automática de ontologias expressivas (expressividade máxima ALC – Attributive Concept Language with Complements) e raciocinio automático, a partir de interações em linguagem natural com seres humanos. Renan permite a identificação de axiomas e modificação destes. Além disso, realiza raciocínio de subsunção, deduzindo novos fatos a partir de outros, assim como, a verificação de inconsistências nestes fatos durante as interações com seus usuários. Também incluímos em nossas conclusões que nossa abordagem contribui para os engenheiros de ontologias e desenvolvedores, além de usuários inexperientes/leigos interessados no seu desenvolvimento. / Approaches based on Natural Language Processing, like dialogue systems - which work responding questions asked by users in a brief and superficial way - as well as systems based on Ontology Learning techniques, which are used for the construction of semi-automatic ontologies from text, are largely found on the Web and have the ability to perform automated reasoning, as well as representing knowledge. These capabilities – those of reason and knowledge representation – are questionable and considered limited. This situation leads our operation to a new dialogue system paradigm: a system able to dialogue, learn by deduction and represent knowledge in multiple domains of Description Login. To demonstrate that the dialogue system developed and called Renan, designed for semi-automatic ontologies creation, which interacts with users in natural language, formalizing and codifying knowledge in Description Logic and, mainly, with ability to learn and perform automated reasoning -from these interactions with users – may be a viable and effective solution for automating the building process of expressive and good quality ontologies. The results showed that Renan consists in an efficient solution for: (1) Knowledge Representation; therefore, formalizes and model knowledge domain in a standard and expressive language from the Web Semantic, through natural language interactions controlled by users. (2) Automatic Reasoning; the approach allows new facts to be deduced from others facts, performing reasoning subsumption as well as inconsistencies, checking contradictory facts in the knowledge bases built during interactions with their users. Renan, contributes to state of the art advancement, providing thus an appropriate and effective solution for the automatic construction of expressive ontologies (maximum expressiveness ALC - Attributive Concept Language with Complements) and automatic reasoning, from interactions in humans natural language. Renan enables the identification and modification of these axioms. In addition, performs subsumption reasoning by deducing new facts from another, checking for inconsistencies in these facts during interactions with their users as well. We also included in our conclusive considerations that our approach contributes to the ontologic engineers and developers, and inexperienced / laity interested in the development users.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/24294 |
Date | 09 March 2015 |
Creators | AZEVEDO, Ryan Ribeiro de |
Contributors | http://lattes.cnpq.br/6195215666638965, FREITAS, Frederico Luiz Gonçalves de |
Publisher | Universidade Federal de Pernambuco, Programa de Pos Graduacao em Ciencia da Computacao, UFPE, Brasil |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE |
Rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds