Observa-se nos tempos atuais um crescente interesse e demanda por novas tecnologias de sensoriamento e interação. A monitoração, com o objetivo de reconhecimento de movimentos humanos, permite oferecer serviços personalizados em diferentes áreas, dentre elas a área de cuidados médicos. Essa monitoração pode ser realizada por meio de diferentes técnicas como o uso de câmeras de vídeo, instrumentação do ambiente onde o indivíduo habita, ou pelo uso de dispositivos pessoais acoplados ao corpo. Os dispositivos acoplados ao corpo apresentam vantagens como baixo custo, uso confortável, além de muitas vezes serem despercebidos pelo usuário, diminuindo a sensação de invasão de privacidade durante a monitoração. Além disso, o dispositivo sensor pode ser facilmente acoplado ao corpo pelo próprio usuário, tornando o seu uso efetivo. Deste modo, este trabalho apresenta o desenvolvimento de um sistema que emprega técnicas de inteligência computacional e um acelerômetro facilmente acoplado ao punho do usuário para efetuar, de maneira confortável e não invasiva, o reconhecimento de movimentos básicos da rotina de uma pessoa. Aplicando máquinas de vetores de suporte para classificar os sinais e a razão discriminante de Fisher para efetuar a seleção das características mais significativas, o sistema apresentou uma taxa de sucesso em torno de 93% no reconhecimento de movimentos básicos efetuados por indivíduos monitorados. O sistema apresenta potencialidade para ser integrado a um hardware embarcado de baixo custo, responsável pelo gerenciamento da aquisição dos dados e pelo encaminhamento das informações a um sistema de monitoramento ou armazenamento. As informações providas por este sistema podem ser destinadas à promoção da saúde e bem estar do indivíduo, bem como utilizadas em diagnósticos ou monitoramento remoto de pacientes em um ambiente de vida assistida. / Nowadays it is observed a growing interest and demand for new sensing technologies and interaction. Monitoring with the objective of recognizing human movements, allows us to offer personalized services in different areas, among them healthcare. This monitoring can be performed through the use of different techniques such as the use of video cameras, living environment instrumentation, or the use of personal devices attached to the body, also known as wearable devices. These wearable devices have some advantages such as low cost, comfortable to use, and are often unnoticed by the user, reducing the feeling of privacy invasion during the monitoring. In addition, the sensing device can be easily attached to the body by the user itself, making its use effective. Thus, this work presents the development of a system that uses computational intelligence techniques and an accelerometer which is easily attached to the users wrist to perform, in a comfortable and non-invasive manner, the recognition of basic movements of a persons routine. By applying support vector machines to classify the signals and Fishers discriminant ratio to select the most significant features, the system has shown a success rate of 93% in the recognition of basic movements performed by monitored individuals. The system has the potential to be integrated into a low-cost embedded hardware, which is responsible for managing the data acquisition and routing the movement data to a remote monitoring system or storage. The information provided by the system can be designed to promote the health and wellness of the individual, as well used in diagnostics or remote patient monitoring in an ambient assisted living (AAL).
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-22092014-103901 |
Date | 19 November 2013 |
Creators | Fernando Ginez da Silva |
Contributors | Elisabete Galeazzo, Gerson Ballester, Leopoldo Rideki Yoshioka |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0014 seconds