Return to search

Analytical Techniques for the Improvement of Mass Spectrometry Protein Profiling

Bioinformatics is rapidly advancing through the "post-genomic" era following the sequencing of the human genome. In preparation for studying the inner workings behind genes, proteins and even smaller biological elements, several subdivisions of bioinformatics have developed. The subdivision of proteomics, concerning the structure and function of proteins, has been aided by the mass spectrometry data source. Biofluid or tissue samples are rapidly assayed for their protein composition. The resulting mass spectra are analyzed using machine learning techniques to discover reliable patterns which discriminate samples from two populations, for example, healthy or diseased, or treatment responders versus non-responders. However, this data source is imperfect and faces several challenges: unwanted variability arising from the data collection process, obtaining a robust discriminative model that generalizes well to future data, and validating a predictive pattern statistically and biologically.
This thesis presents several techniques which attempt to intelligently deal with the problems facing each stage of the analytical process. First, an automatic preprocessing method selection system is demonstrated. This system learns from data and selects a combination of preprocessing methods which is most appropriate for the task at hand. This reduces the noise affecting potential predictive patterns. Our results suggest that this method can help adapt to data from different technologies, improving downstream predictive performance. Next, the issues of feature selection and predictive modeling are revisited with respect to the unique challenges posed by proteomic profile data. Approaches to model selection through kernel learning are also investigated. Key insights are obtained for designing the feature selection and predictive modeling portion of the analytical framework. Finally, methods for interpreting the results
of predictive modeling are demonstrated. These methods are used to assure the user of various desirable properties: validation of the strength of a predictive model, validation of reproducible signal across multiple data generation sessions and generalizability of predictive models to future data. A method for labeling profile features with biological identities is also presented, which aids in the interpretation of the data. Overall, these novel techniques give the protein profiling community additional support and leverage to aid the predictive capability of the technology.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-03302011-144506
Date30 June 2011
CreatorsPelikan, Richard Craig
ContributorsGregory Cooper, William L. Bigbee, Milos Hauskrecht, Vanathi Gopalakrishnan
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-03302011-144506/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0087 seconds