Des travaux récents indiquent qu'il existe des différences fondamentales entre les systèmes visuel et auditif: tandis que le premier semble échantillonner le flux d'information en provenance de l'environnement, en passant d'un "instantané" à un autre (créant ainsi des cycles perceptifs), la plupart des expériences destinées à examiner ce phénomène de discrétisation dans le système auditif ont mené à des résultats mitigés. Dans cette thèse, au travers de deux expériences de psychophysique, nous montrons que le sous-échantillonnage de l'information à l'entrée des systèmes perceptifs est en effet plus destructif pour l'audition que pour la vision. Cependant, nous révélons que des cycles perceptifs dans le système auditif pourraient exister à un niveau élevé du traitement de l'information. En outre, nos résultats suggèrent que du fait des fluctuations rapides du flot des sons en provenance de l'environnement, le système auditif tend à avoir son activité alignée sur la structure rythmique de ce flux. En synchronisant la phase des oscillations neuronales, elles-mêmes correspondant à différents états d'excitabilité, le système auditif pourrait optimiser activement le moment d'arrivée de ses "instantanés" et ainsi favoriser le traitement des informations pertinentes par rapport aux événements de moindre importance. Non seulement nos résultats montrent que cet entrainement de la phase des oscillations neuronales a des conséquences importantes sur la façon dont sont perçus deux flux auditifs présentés simultanément ; mais de plus, ils démontrent que l'entraînement de phase par un flux langagier inclut des mécanismes de haut niveau. Dans ce but, nous avons créé des stimuli parole/bruit dans lesquels les fluctuations de l'amplitude et du contenu spectral de la parole ont été enlevés, tout en conservant l'information phonétique et l'intelligibilité. Leur utilisation nous a permis de démontrer, au travers de plusieurs expériences, que le système auditif se synchronise à ces stimuli. Plus précisément, la perception, estimée par la détection d'un clic intégré dans les stimuli parole/bruit, et les oscillations neuronales, mesurées par Electroencéphalographie chez l'humain et à l'aide d'enregistrements intracrâniens dans le cortex auditif chez le singe, suivent la rythmique "de haut niveau" liée à la parole. En résumé, les résultats présentés ici suggèrent que les oscillations neuronales sont un mécanisme important pour la discrétisation des informations en provenance de l'environnement en vue de leur traitement par le cerveau, non seulement dans la vision, mais aussi dans l'audition. Pourtant, il semble exister des différences fondamentales entre les deux systèmes: contrairement au système visuel, il est essentiel pour le système auditif de se synchroniser (par entraînement de phase) à son environnement, avec un échantillonnage du flux des informations vraisemblablement réalisé à un niveau hiérarchique élevé. / Recent research indicates fundamental differences between the auditory and visual systems: Whereas the visual system seems to sample its environment, cycling between "snapshots" at discrete moments in time (creating perceptual cycles), most attempts at discovering discrete perception in the auditory system failed. Here, we show in two psychophysical experiments that subsampling the very input to the visual and auditory systems is indeed more disruptive for audition; however, the existence of perceptual cycles in the auditory system is possible if they operate on a relatively high level of auditory processing. Moreover, we suggest that the auditory system, due to the rapidly fluctuating nature of its input, might rely to a particularly strong degree on phase entrainment, the alignment between neural activity and the rhythmic structure of its input: By using the low and high excitability phases of neural oscillations, the auditory system might actively control the timing of its "snapshots" and thereby amplify relevant information whereas irrelevant events are suppressed. Not only do our results suggest that the oscillatory phase has important consequences on how simultaneous auditory inputs are perceived; additionally, we can show that phase entrainment to speech sound does entail an active high-level mechanism. We do so by using specifically constructed speech/noise sounds in which fluctuations in low-level features (amplitude and spectral content) of speech have been removed, but intelligibility and high-level features (including, but not restricted to phonetic information) have been conserved. We demonstrate, in several experiments, that the auditory system can entrain to these stimuli, as both perception (the detection of a click embedded in the speech/noise stimuli) and neural oscillations (measured with electroencephalography, EEG, and in intracranial recordings in primary auditory cortex of the monkey) follow the conserved "high-level" rhythm of speech. Taken together, the results presented here suggest that, not only in vision, but also in audition, neural oscillations are an important tool for the discretization and processing of the brain's input. However, there seem to be fundamental differences between the two systems: In contrast to the visual system, it is critical for the auditory system to adapt (via phase entrainment) to its environment, and input subsampling is done most likely on a hierarchically high level of stimulus processing.
Identifer | oai:union.ndltd.org:theses.fr/2015TOU30232 |
Date | 08 December 2015 |
Creators | Zoefel, Benedikt |
Contributors | Toulouse 3, VanRullen, Rufin |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds