Return to search

Effect of High Intensity Ultrasound on Crystallization Behavior and Functional Properties of Lipids

The effects of high intensity ultrasound (HIU) on the crystallization behavior and functional properties of shortenings were evaluated. HIU was applied to different shortenings such as interesterified soybean oil (IESBO), multi-purpose commercial shortening, palm oil, and palm stearin. The functional properties measured include crystal morphology, solid fat content, melting profile, viscoelastic properties, hardness, and polymorphism. Different experimental set-ups were evaluated including a static batch system, a temperature cycling design, and flow cell system. Results showed that HIU generated harder material on IESBO, commercial shortening, and palm oil with more uniform and smaller crystal size, sharper melting profile, and higher elasticity. No chemical changes on triacylglycerol (TAG) and fatty acids were observed on IESBO under the sonication conditions used in this dissertation. Application of HIU maintained the texture of the commercial shortening that was subjected to temperature fluctuations, especially when HIU was applied before changes in temperature occurred. When sonication was applied in a flow-cell system lower power levels applied in a continuous manner was proved to be the most effective at inducing crystallization of palm oil. Research also showed that pulse irradiation of sonication and higher flow rates could be used to decrease the thermal effects generated by higher power levels of HIU. In addition, HIU was used in a highly saturated fat (palm stearin) at low power levels with long durations to delay lipid crystallization and generate a softer material. All the research findings suggest the great potential use of HIU in shortening production and food processing to improve the texture and its stability, as well as other functional properties.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-5332
Date01 May 2015
Creatorsye, Yubin
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0019 seconds