Return to search

Commissioning and validation of small subfields in Step-and-shoot IMRT

One of the most used irradiation techniques in modern radiation therapy is step-and-shoot IMRT. The accuracy of this technique when delivering complex dose distributions strongly depends on the size of the subfields. The aims of this study is to determine the minimum size of subfields that can be used efficiently in Step-and-Shoot IMRT, to investigate the validation process for beam delivery and treatment planning dose calculations, and to find recommendations for practical clinical implementations. Two different detectors, a CC04 ion chamber and a SFD stereotactic diode, have been used for measuring head scatter factors in air (Sc), total output factors (Scp) and dose profiles in water for a wide range of field sizes. The measurements were compared to calculations done with a pre-release version of the Nucletron MasterPlanTM v 3.1 treatment planning system that employs a novel, high resolution fluence modelling for both its pencil beam and collapsed cone dose calculation algorithms. Collimator settings were explicitly checked using FWHM film measurements with a build-up sheet of tungsten placed close to the treatment head to reduce the influence from lateral electron transport and geometrical penumbra. An analysis of the influence and sensitivity of Scp for small fields with respect to the linear accelerator source size and shape was also made. The measurements with the ionization chamber and the stereotactic diode showed good agreements with each other and with the treatment planning system calculations for field sizes larger than 2×2 cm2. For small field sizes, measurements with different detectors yielded different results. Calculations showed agreements with measurements with the smallest detector, provided careful field size calibration and commissioning of calculation parameters. Uncertainties in collimator settings and source characteristics were shown to yield large uncertainties in Scp for fields smaller than 2×2 cm2. The treatment planning system was found to properly handle small subfields but results were very sensitive to uncertainties in source size, as well as calibration and reproducibility of the collimator settings. Therefore if subfields smaller than 2×2 cm2 are to be used in IMRT extra care should be taken to determine the source characteristics and to calibrate the collimators. The volume of the detectors used for validation of such small fields and the loss of charged particle equilibrium conditions also have to be taken into consideration.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-8316
Date January 2008
CreatorsAndræ, Nils
PublisherStockholms universitet, Medicinsk strålningsfysik (tills m KI)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0189 seconds