Notre travail se situe dans le contexte de partage de réseau mobile actif, ou un nombre d'opérateurs partagent leur accès radio, afin de former un système multi-technologie multi-opérateur. Le but de notre étude est de montrer les avantages de la coopération entre les opérateurs, principalement en ce qui concerne les revenus. De plus, nous cherchons des stratégies pour surpasser les conséquences négatives du partage des ressources, surtout celles touchant la performance des réseaux des opérateurs coopérants. Nous avons montré que les bénéfices de la coopération dépendent fortement du choix de partenaires, la tarification de service ( cout de transfert) entre les partenaires, et combien un opérateur partage de ses ressources. Notre travail consiste, en premier temps, à proposer un algorithme de sélection d'accès applicable dans un réseau multi-opérateurs. Cet algorithme devrait garantir la satisfaction en QoS de l'utilisateur et celle en profit de son opérateur d'accès à l'Internet. Ainsi, un algorithme adoptant une décision hybride, NP-BPA (Nearest Performance and Best Profit Algorithm), est proposé. En deuxième temps, nous étudions la tarification de service entre les opérateurs partenaires, précisément le coût de transfert d'un utilisateur. Ce dernier paye juste le prix du service que son opérateur d'accès à l'Internet détermine, il est inconscient du transfert. Les modèles de tarification proposés relient le coût de transfert d'un opérateur au prix adopté pour le service des clients. Le premier modèle, ACAG (As Client As Guest), suggère que le coût de transfert d'un opérateur soit égal à son prix de service. Le deuxième modèle, MIWC (Maximum Income When Cooperating), suggère que les coûts de transfert des opérateurs coopérants soient identiques, et égaux au prix de service le plus élevé des partenaires. Et, le troisième modèle, MCWC (Minimum Cost When Cooperating), suggère que les coûts de transfert des opérateurs coopérants soient identiques et égaux au plus petit prix de service des partenaires. La décision du meilleur modèle à adopter lors de la coopération, intervient une interaction entre les différents partenaires. Nous avons modélisé cette interaction à l'aide de la théorie de jeux. Nous avons exploité un jeu Stackelberg à deux niveaux, TPA (Transaction Pricing and Access Selection), où les opérateurs de service agissent comme Leaders et les opérateurs d'accès à l'Internet des utilisateurs à transférer agissent comme Followers. Finalement, nous avons considéré le mode d'accès hybride pour la coopération. Ce mode d'accès est proposé comme solution surtout pour les opérateurs partageant la plus grande capacité. La performance du réseau de ces opérateurs est relativement affaiblie suite à la coopération. Nous avons vérifié que le pourcentage de blocage diminue quand l'opérateur, ayant une capacité élevée, réduit le pourcentage de ressources partagées. Pour un même pourcentage de partage, le profit d'un opérateur diffère avec le modèle de tarification adopté. Ainsi, une bonne décision doit être prise, concernant le pourcentage de partage et le modèle de tarification, tout en tenant compte de l'effet de cette décision sur les autres partenaires du système. C'est pourquoi que nous avons proposé un nouvel jeu séquentiel à deux niveaux, afin de modéliser l'interaction entre les opérateurs, pour le partage de ressources et la tarification du coût de transfert. / We consider a roaming-based infrastructure sharing system, where multiple operators share their radio access in a multi-operator environment. Indeed, when the home operator of a user is unable to satisfy its constraints, because of lack of resources or QoS, a transaction event is triggered. It consists in transferring the considered user to another operator in order to access the service. Moreover, when there are more than two operators sharing their access, the user transfer process includes an access selection decision in order to choose the best operator for service. Furthermore, when a user is transferred, its home operator must pay some transaction cost as cooperation fees for the new service operator. This transaction is seamless to the user. Therefore, the inter-operators sharing agreement set for cooperation must include three important issues: the selection decision algorithm, the transaction cost pricing scenario, and the percentage of resources shared by each operator. In the first part, we introduce our selection decision algorithm in a multi-operator environment, NP-BPA (Nearest Performance and Best Profit Algorithm). It is based on a multi-criteria cost function which groups the different parameters that enable a satisfying selection decision, for the operators and users. In the second part, we study the transaction cost. We find rational that an operator sets its transaction cost as a function of its service price. We consider a sharing system of three partners, interacting to decide the best transaction cost. Taking into account that the service of a guest user may affect the probability of acceptance of a client, an operator looks for preserving the expected revenue from its client. Therefore, we propose the first pricing scenario, ACAG (As Client As Guest) that aims to set the transaction cost of an operator equal to its service price. However, every operator seeks to maximize its revenue; therefore it is expected to set a higher transaction cost. How much higher? This must respect the sharing agreement between different partners and the service prices they adopt. To be optimistic, we propose a second pricing scenario MIWC (Max In When Cooperating). With this scenario all partners agree to have a transaction cost equal to the highest service price announced in the system. But, this scenario may cause losses in some cases where an operator setting a low service price performs a lot of transactions. To be fair, we propose a third pricing scenario MCWC (Min Cost When Cooperating). With this scenario all partners agree to have a transaction cost equal to the lowest service price announced in the system. In order to decide the best pricing scenario to adopt in the sharing system, a two stage Stackelberg game, TPA (Transaction Pricing and Access Selection) game, is formulated. In this game, the operators are the players; the service operators are the leaders and the home operator of a transferred user is a follower. In the third part, we consider a three operator sharing system with hybrid access mode. In this system partners decide to share a restricted amount of their capacity. We show how the sharing factor affects the blocking rates and affect the global profits. Further, the achieved profit does not depend only on the sharing factor, but also on the adopted pricing scenario. Therefore an economic framework based on game theoretical analysis is proposed. It models the interaction between the sharing system operators for resource sharing and pricing, in addition to the access selection. A sequential game is formulated, where the players are the operators. In the first stage, the sharing partners decide the proportion of resources they will share and the transaction pricing scenario in order to maximize their own profits. In the second stage, the home operator of a transferred user selects the suitable service operator. A bi-level optimization problem is solved and equilibrium is found.
Identifer | oai:union.ndltd.org:theses.fr/2016REN1S029 |
Date | 19 July 2016 |
Creators | Farhat, Soha |
Contributors | Rennes 1, Université libanaise, Cousin, Bernard, Lahoud, Samer |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds