Return to search

Optimisation et visualisation de cache de luminance en éclairage global / optimization and visualization of a radiance cache in global Illumination

La simulation d'éclairage est un processus qui s'avère plus complexe (temps de calcul, coût mémoire, mise en œuvre complexe) aussi bien pour les matériaux brillants que pour les matériaux lambertiens ou spéculaires. Afin d'éviter le calcul coûteux de certains termes de l'équation de luminance (convolution entre la fonction de réflexion des matériaux et la distribution de luminance de l'environnement), nous proposons une nouvelle structure de données appelée Source Surfacique Équivalente (SSE). L'utilisation de cette structure de données nécessite le pré-calcul puis la modélisation du comportement des matériaux soumis à divers types de sources lumineuses (positions, étendues). L'exploitation d'algorithmes génétiques nous permet de déterminer les paramètres des modèles de BRDF, en introduisant une première source d'approximation. L'approche de simulation d'éclairage utilisée est basée sur un cache de luminance. Ce dernier consiste à stocker l'éclairement incident sous forme de SSE en des points appelés enregistrements. Durant la simulation d'éclairage, l'environnement lumineux doit également être assimilé à un ensemble de sources surfaciques équivalentes (en chaque enregistrement) qu'il convient de définir de manière dynamique. Cette phase constitue une deuxième source d'erreur. Toutefois, l'incertitude globale ne se réduit pas au cumul des approximations réalisées à chaque étape. Les comparatives réalisées prouvent, au contraire, que l'approche des Sources Surfaciques Équivalentes est particulièrement intéressante pour des matériaux rugueux ou pour les matériaux très brillants placés dans des environnements relativement uniformes. L'utilisation de SSE a permis de réduire considérablement à la fois le coût mémoire et le temps de calcul. Une fois que les SSE sont calculés en chaque enregistrement et pour un certain nombre de points de vue, nous proposons une nouvelle méthode de visualisation interactive exploitant les performances des GPU (carte graphique) et s'avérant plus rapide que les méthodes existantes. Enfin nous traiterons le cas où les grandeurs photométriques sont spectrales, ce qui est très important lorsqu'il s'agit de réaliser des simulations d'éclairage précises. Nous montrerons comment adapter les zones d'influence des enregistrements en fonction des gradients de luminance et de la géométrie autour des enregistrements. / Radiance caching methods have proven efficient for global illumination. Their goal is to compute precisely illumination values (incident radiance or irradiance) at a reasonable number of points lying on the scene surfaces. These points, called records, are stored in a cache used for estimating illumination of other points in the scene. Unfortunately, with records lying on glossy surfaces, the irradiance value alone is not sufficient to evaluate the reflected radiance; each record should also store the incident radiance for all incident directions. Memory storage can be reduced with projection techniques using spherical harmonics or other basis functions. These techniques provide good results with low shininess BRDFs. However, they get impractical for shininess of even moderate value since the number of projection coefficients increase drastically. In this paper, we propose a new radiance caching method, that handles highly glossy surfaces, while requiring a low memory storage. Each cache record stores a coarse representation of the incident illumination thanks to a new data structure called Equivalent Area light Sources (EAS), capable of handling fuzzy mirror surfaces. In addition, our method proposes a new simplification of the interpolation process since it avoids the need for expressing and evaluating complex gradients. Moreover, we propose a new GPU based visualisation method which exploits these EAS data structure. Thus, interactive rendering is done faster than existing methods. Finally, physical ligting simulations need to manipulate spectral physical quantities. We demonstrate in our work how these quantities can be handle with our technic by adapting the record influence zone depending on the radiance gradients and the geometry around the records.

Identiferoai:union.ndltd.org:theses.fr/2015REN1S097
Date20 May 2015
CreatorsOmidvar, Mahmoud
ContributorsRennes 1, Bouatouch, Kadi
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds