Les impulsions laser femtosecondes produisent des phénomènes non linéaires extrêmes dans la matière, conduisant à une forte émission de rayonnement secondaire qui couvre un domaine en fréquence allant du terahertz (THz) aux rayons X et gamma. De nombreuses applications utilisent la bande de fréquences terahertz (0.1-100 THz) afin de sonder la matière (spectroscopie, médecine, science des matériaux). Ce travail est dédié à l'étude théorique et numérique du rayonnement THz généré par interaction laser-plasma. Comparé aux techniques conventionnelles, ces impulsions laser permettent de créer des sources THz particulièrement énergétiques et à large bande. Notre objectif a donc été d'étudier ces régimes d'interaction relativiste, encore peu explorés, afin d'optimiser l'efficacité de conversion du laser vers les fréquences THz. L'étude de l'interaction laser-gaz en régime classique nous permet, d'abord, de valider un modèle de propagation unidirectionnelle prenant en compte la génération d'impulsion THz et de le comparer à la solution exacte des équations de Maxwell. Ensuite, en augmentant l'intensité laser au-delà du seuil relativiste, nous simulons à l'aide d'un code PIC une onde plasma non linéaire dans le sillage du laser, accélérant ainsi des électrons à plusieurs centaines de MeV. Nous montrons que le mécanisme standard des photocourrants est dominé par le rayonnement de transition cohérent induit par les électrons accélérés dans l'onde de sillage. La robustesse de ce rayonnement est ensuite observée grâce à une étude paramétrique faisant varier la densité du plasma sur plusieurs ordres de grandeur. Nous démontrons également la pertinence des grandes longueurs d'ondes laser qui sont à même de déclencher une forte pression d'ionisation, ce qui augmente la force pondéromotrice du laser. Enfin, les rayonnements THz émis à partir d'interactions laser-solide sont examinés dans le contexte de cibles ultra fine, mettant en lumière les différents processus impliqués. / Femtosecond laser pulses trigger extreme nonlinear events inmatter, leading to intense secondary radiations spanning the frequency rangesfrom terahertz (THz) to X and gamma-rays.This work is dedicated to the theoretical and numerical study of THz radiationgenerated by laser-driven plasmas. Despite the inherent difficulty in accessingthe THz spectral window (0.1-100 THz), many coming applications use theability of THz frequencies to probe matter (spectroscopy, medicine, materialscience). Laser-driven THz sources appear well-suited to provide simultaneouslyan energetic and broadband signal compared to other conventional devices. Ourgoal is to investigate previously little explored interaction regimes in orderto optimize the laser-to-THz conversion efficiency.Starting from classical interactions in gases, we validate a unidirectionalpropagation model accounting for THz pulse generation, which we compare to theexact solution of Maxwell's equations. We next increase the laser intensityabove the relativistic threshold in order to trigger a nonlinear plasma wave inthe laser wake, accelerating electrons to a few hundreds of MeV. We show thatthe standard photocurrent mechanisms is overtaken by coherent transitionradiation induced by wakefield-accelerated electron bunch. Next, successivestudies reveal the robustness of this latter process over a wide range of plasmaparameters. We also demonstrate the relevance of long laser wavelengths inaugmenting THz pulse generation through the ionization-induced pressure thatincreases the laser ponderomotive force. Finally, THz emission from laser-solidinteraction is examined in the context of ultra-thin targets, shedding light onthe different processes involved.
Identifer | oai:union.ndltd.org:theses.fr/2019SACLS358 |
Date | 14 October 2019 |
Creators | Déchard, Jérémy |
Contributors | Paris Saclay, Berge, Luc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds