The goal of this project was to develop a non-toxic amphiphilic diblock copolymer nanoparticulate drug delivery system that will solubilize paclitaxel (PTX) and retain the drug in plasma. Methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (MePEG-b-PCL) diblock copolymers loaded with PTX were characterized and their physicochemical properties were correlated with their performance as nanoparticulate drug delivery systems. A series of MePEG-b-PCL was synthesized with PCL blocks ranging from 2-104 repeat units and MePEG blocks of 17, 44 or 114 repeat units. All copolymers were water soluble and formed micelles except MePEG₁₁₄-b-PCL₁₀₄, which was water insoluble and formed nanospheres.
Investigation of the effects of block length on the physicochemical properties of the nanoparticles was used to select appropriate copolymers for development as PTX nanoparticles. The critical micelle concentration, pyrene partition coefficient and diameter of nanoparticles were found to be dependent on the PCL block length. Copolymers based on a MePEG molecular weight of 750 g/mol were found to have temperature dependent phase behavior.
Relationships between the concentration of micellized drug and the compatibility between the drug and core-forming block, as determined by the Flory-Huggins interaction parameter, and PCL block length were developed. Increases in the compatibility between PCL and the drug, as well as longer PCL block lengths resulted in increased drug solubilization.
The physicochemical properties and drug delivery performance characteristics of MePEG₁₁₄-b-PCL₁₉ micelles and MePEG₁₁₄-b-PCL₁₀₄ nanospheres were compared. Nanospheres were larger, had a more viscous core, solubilized more PTX and released it slower, compared to micelles. No difference was seen in the hemocompatibility of the nanoparticles as assessed by plasma coagulation time and erythrocyte hemolysis. Micellar PTX had an in vitro plasma distribution similar to free drug. The majority of micellar PTX associated with the lipoprotein deficient plasma fraction (LPDP). In contrast, nanospheres were capable of retaining more of the encapsulated drug with significantly less PTX partitioning into the LPDP fraction.
In conclusion, although both micelles and nanospheres were capable of solubilizing PTX and were hemocompatible, PTX nanospheres may offer the advantage of prolonged blood circulation, based on the in vitro plasma distribution data, which showed that nanospheres retained PTX more effectively. / Pharmaceutical Sciences, Faculty of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/2487 |
Date | 11 1900 |
Creators | Letchford, Kevin John |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Format | 31760997 bytes, application/pdf |
Rights | Attribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Page generated in 0.0024 seconds