Return to search

Vortex-induced vibrations of a rigid circular cylinder / Vibrations induites par vortex d'un cylindre circulaire rigide

Lorsqu’un corps flexible non-profilé est immergé dans un écoulement, les forces instationnaires associées au phénomène de détachement tourbillonnaire peuvent provoquer une réponse vibratoire de la structure. Ces vibrations induites par vortex (VIV) se produisent via un mécanisme de synchronisation entre l’instationnarité du sillage et le déplacement du corps, aussi appelé mécanisme de lock-in. Les VIV ont un effet néfaste sur beaucoup de systèmes industriels, mais elles peuvent également être utilisées comme convertisseur d’énergie mécanique pour l’extraction d’énergie. Dans ce travail, les VIV d’un cylindre circulaire rigide, monté sur un support flexible, sont étudiées dans différentes configurations sur la base de simulations numériques directes. (i) Les mécanismes d’interaction sont d’abord examinés au début du régime turbulent, où les VIV ont rarement été étudiées numériquement. Le nombre de Reynolds, basé sur le diamètre du cylindre et la vitesse incidente, est fixé à 3900. Une analyse conjointe des réponses structurelles et des forces fluides est réalisée sur un intervalle de vitesses réduites (inverse de la fréquence naturelle du corps), dans le cas où le cylindre est libre d’osciller dans les directions longitudinale et transverse, c.a.d les directions parallèle et perpendiculaire à l’écoulement incident. (ii) Le comportement du système lorsque le corps est libre d’osciller dans une direction seulement est également exploré, révélant les interactions possibles entre les déplacements longitudinal et transverse dans le cas à deux degrés de liberté (2-ddl) ; l’analyse montre par exemple comment des oscillations longitudinales de grandes amplitudes peuvent être induites par un déplacement transverse du corps. (iii) Le sillage tri-dimensionnel se développant en aval du cylindre est analysé dans le cas 2-ddl et dans le cas du corps fixe. Les structures d’écoulement dans la direction axiale (parallèle à l’axe du cylindre) sont analysées quantitativement à partir des amplitudes et longueurs d’onde des fluctuations de vorticité dans cette direction ; l’altération de ces structures lorsque le corps oscille diffère dans les couches cisaillées et plus en aval dans le sillage. (iv) La dernière configuration étudiée concerne un cylindre immergé dans un écoulement linéairement cisaillé dans la direction transverse. L’impact de la brisure de symétrie, induite par le cisaillement, sur le comportement du système fluide-structure, est exploré. Différents régimes d’interaction sont mis en évidence dans l’espace paramétrique défini par le taux de cisaillement et la vitesse réduite. Certains d’entre eux sont associés à une profonde reconfiguration du sillage et à une altération majeure des forces fluides. / When a flexible body with bluff cross-section is immersed in a flow, the unsteady fluid forces accompanying the vortex-shedding phenomenon may lead to structural vibrations. These vortexinduced vibrations (VIV) occur through a mechanism of synchronization between flow unsteadiness and body displacement, referred to as lock-in. VIV are detrimental to many industrial systems, but may also be used as mechanical energy converter in the context of flow energy harvesting. In the present work, the VIV of a rigid circular cylinder mounted on a elastic support are investigated in various configurations on the basis of direct numerical simulations. Four aspects are studied. (i) The interaction mechanisms are first examined in the early turbulent regime, where VIV have been rarely studied numerically. The Reynolds number, based on the cylinder diameter and oncoming flow velocity, is set to 3900. A combined analysis of the structural responses and fluid forcing in the case where the cylinder is free to oscillate in the in-line and cross-flow directions, i.e. the directions parallel and perpendicular to the oncoming flow, is performed over a range of the reduced velocity (inverse of the oscillator natural frequency). (ii) The system behavior when the body is free to oscillate in a single direction only is also explored, shedding some light on the possible interactions between in-line and cross-flow motions in the two-degree-of-freedom (2-dof) case; the analysis shows for instance how large-amplitude in-line oscillations may be induced by cross-flow motion. (iii) The three-dimensional wake developing downstream of the oscillating body is analyzed in the 2-dof case as well as in the fixed body case. The spanwise flow patterns, which are analyzed quantitatively in terms of wavelength and amplitude of vorticity fluctuations, are differently altered in the shear-layer and wake regions, when the body oscillates. (iv) The last physical configuration involves a cylinder immersed in a flow linearly sheared in the cross-flow direction. The impact of the symmetry breaking induced by the shear, on the flow-structure system behavior, is explored. Different interaction regimes are uncovered in the shear rate - reduced velocity domain. Some of them are associated with a profound reconfiguration of the wake and a major alteration of the fluid forces.

Identiferoai:union.ndltd.org:theses.fr/2016INPT0131
Date13 December 2016
CreatorsGsell, Simon
ContributorsToulouse, INPT, Braza, Marianna, Bourguet, Rémi
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds