One of the common research goals in disciplines such as computer graphics and robotics is to understand the subtleties of human motion and develop tools for recreating natural and meaningful motion. Physical simulation of virtual human characters is a promising approach since it provides a testbed for developing and testing control strategies required to execute various human behaviors. Designing generic control algorithms for simulating a wide range of human activities, which can robustly adapt to varying physical environments, has remained a primary challenge.
This dissertation introduces methods for generic and robust control of virtual characters in an interactive physical environment. Our approach is to use the information of the physical contacts between the character and her environment in the control design. We leverage high-level knowledge of the kinematics goals and the interaction with the surroundings to develop active control strategies that robustly adapt to variations in the physical scene. For synthesizing intentional motion requiring long-term planning, we exploit properties of the physical model for creating efficient and robust controllers in an interactive framework. The control design leverages the reference motion capture data and the contact information with the environment for interactive long-term planning. Finally, we propose a compact soft contact model for handling contacts for rigid body virtual characters. This model aims at improving the robustness of existing control methods without adding any complexity to the control design and opens up possibilities for new control algorithms to synthesize agile human motion.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/44817 |
Date | 30 June 2011 |
Creators | Jain, Sumit |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.002 seconds