Return to search

Dynamic Systems for Screening, Control and Identification of Protein-Ligand Interactions

Dynamic systems for screening, control and identification of different protein-ligand interactions are presented. Dynamic chemistry is used to produce new compounds/constituents in situ that can interact with a target molecule. Several entities can be introduced at the same time and interact with one another. These molecules make a dynamic combinatorial library (DCL) which is used in dynamic combinatorial chemistry (DCC). DCC is a recently introduced approach to generate dynamically interchanging libraries of compounds. These libraries are made of different building blocks that reversibly interact with one another and spontaneously assemble to encompass all possible combinations. If a target molecule, for instance a receptor is added to the system and one or more molecules show affinity to the target species, these compounds will, according to Le Châtelier´s principle, be amplified on the expense of the other non-bonding constituents. To further advance the technique, especially when biological systems are targeted, new reaction types and new screening methods are necessary. This thesis describes the development of different reversible reactions, thiol/disulfide interchange, transthiolesterification and the nitroaldol (Henry) reaction as means of generating reversible covalent bond reactions. Two different types of target proteins are used, enzymes belonging to the hydrolase family and the plant lectin Concanavalin A. Dynamic combinatorial resolution (DCR) is presented. This new concept relies on the consecutive kinetic resolution of dynamic combinatorial libraries, leading to complete amplification and control of dynamically interchangeable processes. By applying a kinetically controlled step to a thermodynamically controlled system, complete transformation and amplification can be obtained. The concept has been demonstrated by developing transthiolesterification and nitroaldol exchange reactions to generate diversity, forming libraries under thermodynamic control, and used in one-pot processes with kinetically controlled enzyme-mediated resolution. The results demonstrate that the reaction types are useful for the generation of dynamic libraries, and that the dynamic combinatorial resolution concept is highly valuable for efficient substrate identification, asymmetric synthesis, and library screening. The thesis also describes three other dynamic chemistry protocols. The first one describes dynamic kinetic resolution (DKR) of nitroaldol adducts by combined lipase catalysis. The second one describes finding lectin inhibitors from a glycodisulfide library and the third one describes finding an inhibitor of acetylcholinesterase using a tandem driven dynamic self-inhibition approach. / <p>QC 20100818</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4709
Date January 2008
CreatorsLarsson, Rikard
PublisherKTH, Organisk kemi, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CHE-Report, 1654-1081 ; 2008:31

Page generated in 0.0023 seconds