Researchers discovered the existence of non-coding RNA while unraveling the secrets of the human genome. Non-coding RNA molecules are never translated into proteins, yet they are highly abundant and serve critical functions within all cells. Imbalances in one class of regulatory non-coding RNA, known as microRNA (miRNA), lead to diseases such as cancer and cardiovascular disease. MiRNA inhibition is a potent therapeutic strategy because single miRNAs can regulate hundreds of different disease-associated genes. Peptide nucleic acids (PNA) are excellent miRNA inhibitors, yet they have no innate ability to reach miRNA targets in the body. This worksâ central hypothesis is that therapeutic anti-miRNA activity can be improved by engineering nanoparticles to increase PNA blood circulation half-life, cellular uptake, and targeted delivery to the cytoplasm of diseased cells. In this thesis, two highly tunable biomaterials (porous silicon and âsmartâ polymers) are combined to form composite nanoparticles that improve the PNA therapeutic delivery. These nanocomposites are shown to be non-toxic, increase PNA blood-circulation half-life from <1 min to 70 min, and improve PNA delivery to its site of action in target cells. This thesis demonstrates how nanotechnology can aid the clinical translation of a promising new class of therapeutics.
Identifer | oai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03242017-115848 |
Date | 31 March 2017 |
Creators | Beavers, Kelsey Ross |
Contributors | Kasey C. Vickers, Ph.D., Sharon M. Weiss, Ph.D., M.S., Craig L. Duvall, Ph.D., Jeremy W. Mares, Ph.D., Raymond L. Mernaugh, Ph.D., Todd D. Giorgio, Ph.D., David W. Wright, Ph.D. |
Publisher | VANDERBILT |
Source Sets | Vanderbilt University Theses |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.library.vanderbilt.edu/available/etd-03242017-115848/ |
Rights | restrictone, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0019 seconds