La grande cohérence temporelle du signal émis par un oscillateur laser, en comparaison aux autres sources lumineuses, constitue une des propriétés les plus remarquables du laser. Aujourd'hui, un grand nombre d'applications allant de la spectroscopie à la télédétection reposent sur un laser stabilisé, c'est-à-dire d'un laser mono fréquence dont la cohérence temporelle est améliorée par asservissement à une référence externe. Le développement des horloges atomiques optiques et des détecteurs d'ondes gravitationnelles, deux efforts de recherche de portée mondiale qui repoussent continuellement les limites technologiques, est par ailleurs étroitement lié aux progrès dans le domaine de la stabilisation laser. À ce jour, les signaux laser les plus cohérents ont été produits par asservissement à des cavités en espace libre de type Fabry-Perot hautement découplées d'un environnement de laboratoire contrôlé. Dans les cinquante dernières années, ces cavités ont été le sujet d'un intense effort de recherche par les principaux laboratoires de métrologie nationaux ; leur performance est présentement limitée par des fluctuations thermodynamiques de la taille des miroirs délimitant la cavité, une limite qui semble pour l'instant difficile à surmonter. Il y a un intérêt à étudier d'autres types de références externes, non seulement pour établir s'il est possible de vaincre la limite de stabilité actuelle en poussant le progrès dans une direction alternative, mais aussi parce que la complexité des meilleures cavités en espace libre les rend peu attrayantes dans toutes les applications pour lesquelles une stabilité laser record n'est pas requise. Les travaux de recherche présentés dans cette thèse sont unis sous le thème de l'optimisation des interféromètres à fibre optique. Ces interféromètres, tout comme les cavités Fabry-Perot qui ont fait l'objet d'une recherche beaucoup plus poussée, peuvent agir à titre de référence externe pour la stabilisation laser ; ils affichent une performance typiquement déterminée soit par le bruit de photodétection, soit par les fluctuations de longueur et d'indice de la fibre constituant le bras de délai dans une configuration Michelson ou Mach-Zehnder. Fondamentalement, la stabilité ultime d'un laser verrouillé à un tel interféromètre est limitée par les fluctuations d'origine thermodynamique du parcours optique dans la fibre, une limite qui est plus élevée que la limite analogue dans une cavité en espace libre dans la mesure où une fibre de silice conventionnelle est considérée. En comparaison, ces interféromètres fibrés sont toutefois plus simples à construire et à opérer. Les trois premiers articles présentés dans cette thèse s'intéressent au cas d'un interféromètre fibré limité par le bruit de photodétection. Cette condition est normalement atteinte lorsqu'une relativement courte fibre optique est utilisée. On y montre qu'une limite de stabilité fondamentale associée au bruit de grenaille peut être calculée. Surtout, on établit pour la première fois que cette limite peut être asymptotiquement atteinte peu importe la méthode de détection et le point d'opération utilisés, pour autant que deux conditions soient respectées : que tous les signaux interférométriques disponibles soient indépendamment enregistrés et combinés de façon optimale et que le caractère cyclostationnaire du bruit de grenaille soit soigneusement considéré pour la construction de la forme d'onde de démodulation (si le signal laser est modulé). On présente aussi une nouvelle méthode, similaire à la détection auto-hétérodyne, permettant de minimiser l'impact des bruits de photodétection d'origine technique et faciliter l'opération à la limite du bruit de grenaille. Les deux derniers articles de cette thèse s'intéressent plutôt au cas d'un interféromètre dont la performance est limitée par le bruit de longueur optique fondamental de la fibre, ce qui est pertinent pour une fibre de longueur intermédiaire. On y montre que des fibres à coeur creux récemment développées, les fibres antirésonantes, exhibent des propriétés les rendant utilisables aux fins de la stabilisation laser et potentiellement compétitives vis-à-vis des fibres conventionnelles et peut-être même des cavités en espace libre. En particulier, on démontre que ces fibres à coeur creux, lorsque évacuées, affichent un coefficient de rétrodiffusion Rayleigh qui est de quatre ordres de grandeur inférieur à celui d'une fibre conventionnelle ; leur bruit thermoconductif est aussi plus faible par 5 dB à 20 kHz et peut vraisemblablement être diminué davantage. De futurs travaux pourront confirmer si le bruit fondamental de ces fibres est aussi faible qu'envisagé pour les basses fréquences, ce qui permettrait de considérer leur utilisation pour faire véritable compétition aux cavités ultra-stables. / The great temporal coherence of the signal emitted by a laser oscillator, compared to other light sources, constitutes one of the most remarkable properties of the laser. Today, a large number of applications ranging from spectroscopy to remote sensing rely on a stabilized laser, that is, a single-frequency laser whose temporal coherence is improved by locking it to an external reference. The development of optical atomic clocks and gravitational wave detectors, two world-class research efforts that are constantly pushing technological boundaries, is also closely related to advances in laser stabilization. To this day, the most coherent laser signals have been produced by locking lasers to free-space Fabry-Perot cavities highly decoupled from a controlled laboratory environment. In the last fifty years, such cavities have been the subject of an intense research effort by the main national metrology laboratories; their performance is currently limited by thermodynamic fluctuations in the dimensions of the mirrors delimiting the cavity, a limit which currently appears difficult to overcome. There is an interest in studying other types of external references, not only to establish whether it is possible to beat the current stability limit by pushing progress in an alternative direction, but also because the complexity of the best free-space cavities makes them unattractive in all applications for which record stability is not required. The research work presented in this thesis is united under the theme of the optimization of fiber interferometers. Such interferometers, just like the Fabry-Perot cavities which have been the subject of much more extensive research, can act as an external reference for laser stabilization; they display a performance typically determined either by the photodetection noise or by the length and index fluctuations of the optical fiber constituting the delay arm in a Michelson or Mach-Zehnder configuration. Fundamentally, the ultimate stability of a laser locked to such an interferometer is limited by thermodynamic fluctuations of the optical path through the fiber, a limit which is higher than the analogous limit in a free-space cavity when a conventional silica fiber is considered. In comparison, however, these fiber interferometers are simpler to build and operate. The three first articles presented in this thesis focus on the case of a fiber interferometer limited by photodetection noise. This condition is normally reached when a relatively short optical fiber is used. It is shown that a fundamental stability limit associated with shot noise can be calculated. Most importantly, it is established for the first time that this limit can be asymptotically attained regardless of the detection method and the operating point that are used, provided that two conditions are met: that all available interferometric signals are independently recorded and combined in a optimal manner and that the cyclostationary nature of shot noise is carefully considered when constructing the demodulation waveform (if the laser signal is modulated). We also introduce a new method, similar to self-heterodyne detection, which allows the minimization of technical photodetection noise and facilitates shot-noise-limited operation. The last two articles of this thesis rather concern the case of an interferometer whose performance is limited by the fiber's fundamental optical path noise, which is relevant when the delay fiber is of intermediate length. It is shown that recently developed antiresonant hollow-core fibers exhibit properties that make them suitable for the purposes of laser stabilization and potentially competitive with conventional silica fibers and perhaps even free-space cavities. In particular, it is demonstrated that these hollow-core fibers, when evacuated, display a Rayleigh backscattering coefficient which is four orders of magnitude lower than that of a conventional fiber; their thermoconductive noise is also lower by 5 dB at 20 kHz and can likely be reduced further. Future work will confirm whether the fundamental noise of these fibers at low frequencies is as low as currently anticipated, which would allow their consideration to truly compete with ultra-stable free-space cavities.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/108505 |
Date | 12 November 2023 |
Creators | Michaud-Belleau, Vincent |
Contributors | Genest, Jérôme |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxvi, 239 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0033 seconds