In this study, a test technique, referred to as the probe test, has been developed as a quantitative tool for measuring the adhesion in thin adhesive films and coatings. The technique was initially developed as a qualitative test by the Hewlett-Packard Company for measuring adhesion of thin film microelectronic coatings. In the probe test method, an inclined needle-like probe with a conical tip is advanced underneath the free edge of a thin polymeric coating bonded to a substrate, causing the edge to lift-up from the surface of the substrate. A debond is thus initiated at the loading point and propagates as a semi-circular crack at the interface as the probe slides under the coating. A standard test procedure has been developed for testing thin adhesive coating/substrate systems. The sample system used is a thin film epoxy polymer coated silicon system. The interfacial fracture energy (Gc) (or critical strain energy release rate) has been used as a quantitative measure of adhesion for the given adhesive coating/substrate system.
The probe test experiments were conducted using an optical microscope and a WYKO optical profiler. Using the optical microscope, the debond radius was measured for different debond sizes. Using the WYKO optical profiler, the three-dimensional surface topography of the debonded coating around the crack front was measured for different debond sizes. Using the experimental data from the probe test, analytical and numerical (finite element-based) techniques have been developed to determine the interfacial fracture energy (Gc) for the given adhesive coating/substrate system. The analytical techniques were developed based on different plate theory formulations (thin/thick plate - small/large deflection) of the probe test geometry and local curvature measurement at the crack tip. The finite element based techniques were developed using a hybrid numerical-experimental approach and surface-based contact interaction analysis in ABAQUS. The results obtained using thick plate-large deflection formulation correlated with finite element contact interaction analysis results. The probe test can be used with transparent or opaque coatings and thus offers a promising alternative to indentation and other tests methods for characterizing thin film and coating adhesion. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35426 |
Date | 26 October 2006 |
Creators | Chadha, Harpreet Singh |
Contributors | Engineering Science and Mechanics, Dillard, David A., Librescu, Liviu, Dillard, John G. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Thesis.pdf |
Page generated in 0.0025 seconds