Return to search

Leveraging Capillarity

Surface tension is an essential force for the functioning of the world and life. Centuries of study, and still, new applications and limits of surface tension are being explored. Water has always drawn attention for its high surface tension value, 72mN/m compared to ethanol's 20mN/m. The high surface tension allows for numerous applications, superhydrophobic surfaces being one that takes heavy advantage of that value. Superhydrophobicsurfaceshave a high surface energy cost with water, resulting in small contact areas with high advancing and receding contact angles and low contact angle hysteresis. This results in very low adhesion on the surfaces. Here we study the ability of superhydrophobic surfaces with their low adhesion to shed meltwater from frost, showing a decrease in frost thickness to below 3mm for the meltwater to shed. We then take another approach to removing water from a surface, rather than increasing the surface energy cost, we introduce a difference in surface energy cost. Introducing a porous surface across from a solid one, droplets transfer from the solid to the porous, removing over 90% of the volume of the droplet from the solid surface. We thoroughly examine and model the hydrodynamics of the transfer process, varying the solid surface, the donor surface, and the liquid. This bridging between surfaces is then applied to fog harps, examining the efficiencies of large-form fog harps. Fog harps have shown a 3 to 5 times increase in water collection compared to the industry-standard mesh collector. However, droplets from fog collected on the wires eventually grow large enough to touch neighboring wires. Tominimizetheirsurfaceenergy, they begin pulling wires together, "tangling" them. This can potentially reduce efficiency, but has not been applied to large-scale harps until here. Another application of surface tension is then examined, using lower surface tension oils, but trapping them in microstructures to make slippery liquid-infused porous surfaces (SLIPS). The oil coats the microstructure, due to its lower surface tension. This creates a lubricating layer on the surface, along with potential air pockets reducing friction further. These surfaces have been studied extensively with liquids being placed on them, but here we begin to examine them when solids are used instead, showing some interesting cases where increasing the viscosity of the oil actually decreases the friction force. / Doctor of Philosophy / Sponges are something everyone has used, and most people can tell you that they work using surface tension. And for most people, that's enough. It's actually more useful to know to squeeze your sponge dry when you're done to prevent mold than it is to know that it holds onto liquids because of surface tension. But the point here was to take the study of sponges and surface tension to the extreme. To the point that some knowledge is going to be gained solely for the sake of gaining knowledge. Not all knowledge will have immediate uses, but this doesn't take value away from the knowledge, or any eventual uses it might have.

So we start this by looking at the building of scientific knowledge and noticing that a brick is missing. Superhydrophobic surfaces, surfaces that water doesn't want to touch, have been studied very extensively and their properties have been thoroughly explored. However, a direct comparison of the defrosting behaviors, the process of frost melting on a surface, between superhydrophobic and hydrophobic surfaces had not been done. Water does prefer to be on a hydrophobic surface compared to a superhydrophobic one, but it's still uncomfortable. A plate was treated so that half was hydrophobic and the other half was superhydrophobic. Frost was grown across the surface and then melted simultaneously, allowing us to characterize the differences in the behaviors, highlighting the ability of the superhydrophobic surface to shed water droplets at smaller sizes than other surfaces.

Next is a pure fluid mechanics work supporting a heat transfer application. Evaporation, for enhanced heat transfer, and a hydrophilic wick, essentially a sponge, are paired to create a plate with one-way heat transfer. Heating side A can heat side B, but heating side B can't heat side A. Water in the wick gets heated, evaporates from side A and then condenses on side B, carrying heat with it. The condensation grows until it touches the wick, which then pulls it in, allowing it to be evaporated again and cycling more heat. When side B, the smooth surface, is heated, the water can evaporate off it and condense in the wick, but then it has no way to return, preventing further heat transfer. The process of droplets being pulled from side B to the wick in side A is key to the process. It's a sponge pulling water in using surface tension. However, all the smaller pieces have been taken for granted. The second piece is a systematic study of this capture mechanism, exploring the effects of changing liquids, donor surfaces, and receiving porous wicks.

The third is a continuation of the lab's previous work on Fog Harps, arrays of vertical fibers held in place to let fog run into them. The droplets grow until they slide down and can be collected. The wires of the harp are close enough that the water can actually start to tangle them together. This tangling can increase the water needed for sliding and collection to begin. Tensioning the wires can help mitigate the tangling. Here we show harps on around 1,$text{m}^2$, using optimal wire size and spacing that is possible for mass manufacturing. The harps were tested in the lab using humidifiers to generate fog for the harps to collect.

Finally, an initial study of solid objects being pulled across oil-infused microstructured surfaces. The microstructure helps keep the oil on the surface thanks to the surface energy of the oil. These oil-infused surfaces have been studied extensively when liquids are placed on them, but not with solid objects. Solid objects can exert significantly more pressure than liquids, which naturally want to spread when they reach a certain thickness. Experiments were performed with a variety of oil viscosities, microstructures, and oil excess thicknesses. This work is not entirely complete but a significant portion of it is presented here.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/111938
Date20 September 2022
CreatorsMurphy, Kevin Robert
ContributorsEngineering Science and Mechanics, Boreyko, Jonathan B., Cramer, Mark S., Staples, Anne E., Cheng, Jiangtao, Huxtable, Scott T.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsCreative Commons Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0023 seconds