In the direct sequence-code division multiple access (DS-CDMA) system, which uses direct sequence spread spectrum (DSSS) technique to perform multiple-access, the major limitation of the system capacity is the capability of interference rejection. In this system, multiuser receivers usually divided into two groups, the first group is called the ¡§centralized receiver,¡¨ because it must know the information of total users, including the spreading sequence of each user, channel response, etc. Due to the complexity of computation, this kind of receivers is suitable for the base station. The second group is called the ¡§decentralized receiver,¡¨ because it only needs to know the information of desired user, therefore, it is very suitable for mobile station. The decentralized receiver can be further separate into two kinds: data-aided and non-data-aided receivers. Usually, the non-data-aided receiver is also called the blind receiver; our proposed interference cancellator belongs to this blind one.
This thesis mainly discusses the performance of our proposed interference cancellator in different conditions. There is a novel interference detector which can efficiently detect strong interferers in our proposed interference cancellator. When strong interferers exist, the received signal will be passed through the interference-blocking transformer, which exploits the subspace approach to block strong interference. After interference cancelled, conventional de-spreading technique is used to obtain the desired data. In this thesis, besides the complete mathematical analysis of our proposed interference cancellator, computer simulations are also used to observe its performance behavior in different conditions. The simulation results exhibit that this interference cancellator has good performance in different conditions, and due to have the property of low complexity, our proposed interference cancellator is very suitable for the mobile station. Finally, we make a conclusion for this blind interference cancellator, and expect to realize a mature multiuser receiver based on this technique in the future.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0629105-174526 |
Date | 29 June 2005 |
Creators | Hsieh, Tung-Jung |
Contributors | Chin-Liang Wang, Chih-Peng Li, Mao-Ching Chao, Yu-Chan Tang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0629105-174526 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0014 seconds