Return to search

TRANSITIONAL FLOW PREDICTION OF A COMPRESSOR AIRFOIL

The steady flow aerodynamics of a cascade of compressor airfoils is computed using a two-dimensional thin layer Navier-Stokes flow solver. The Dhawan and Narasimha transition model and Mayle‟s transition length model were implemented in this flow solver so that transition from laminar to turbulent flow could be included in the computations. A method to speed up the convergence of the fully turbulent calculations has been introduced. In addition, the effect of turbulence production formulations and including streamline curvature correction in the Spalart-Allmaras turbulence model on the transition calculations is studied. These transitional calculations are correlated with the low and high incidence angle experimental data from the NASA-GRC Transonic Flutter Cascade. Including the transitional flow showed a trendwise improvement in the correlation of the computational predictions with the pressure distribution experimental data at the high incidence angle condition where a large separation bubble existed in the leading edge region of the suction surface.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1043
Date01 January 2010
CreatorsHariharan, Vivek
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Master's Theses

Page generated in 0.0018 seconds