Return to search

Estudo numérico do processo de admissão em um motor de combustão interna utilizando uma metodologia baseada na massa específica pré-condicionada para baixo número de mach com comparação experimental

Quando ar escoa em regime transiente através do duto de admissão, câmaras e válvulas de um motor de combustão interna, alguns efeitos tais como atrito e forças inerciais têm influência direta sobre a eficiência volumétrica do sistema. O presente trabalho, intitulado “Estudo numérico do processo de admissão em um motor de combustão interna utilizando uma metodologia baseada na massa específica pré-condicionada para baixo número de Mach com comparação experimental”, estuda o processo de admissão em um motor de combustão interna simplificado e objetiva investigar o comportamento pulsante presente no duto de admissão e discutir as predições do escoamento através da válvula de admissão por meio da utilização inédita de uma metodologia numérica baseada na massa específica com précondicionamento para baixo número de Mach, incluindo a modelagem tridimensional do duto de admissão na simulação fluidodinâmica. O movimento da válvula de admissão origina números de Mach moderados durante sua abertura. Com o fechamento, o escoamento é restringido abruptamente e uma série de ondas de pressão se propaga através do fluido com baixo número de Mach. Embora a metodologia baseada na massa específica com précondicionamento para baixo número de Mach pareça atrativa, o estudo do escoamento em processos de admissão não tem sido realizado com a utilização desta metodologia, provavelmente por limitações impostas pela robustez e esforço computacional. De modo a verificar a solução numérica, os resultados são comparados a dados experimentais coletados em uma bancada de fluxo construída especificamente com este propósito. Os resultados numéricos mostram-se satisfatórios e diferentes aspectos do jato originado pelo movimento da válvula são expostos e discutidos. / When air flows unsteadily in an internal combustion engine through its inlet pipe, chambers and valves, some effects such as friction and inertial forces have direct influence on the volumetric efficiency of the system. The present work, titled “Numerical study of the intake process of an internal combustion engine using a low Mach preconditioned densitybased method with experimental comparison”, aims to investigate the pulsating phenomena present in an intake pipe of a simplified internal combustion engine and discuss the intake jet flow predictions through the inlet valve by means of the novel use of a low Mach preconditioned density-based method, including the three-dimensional modeling of the intake pipe in the fluid dynamic simulation. Inlet valve movement promotes moderate values of Mach numbers during its opening phase. After closing, the flow is abruptly restricted and a series of pressure waves propagate through the fluid at low Mach numbers. Although low Mach preconditioned density-based method seems to be very attractive in this case, the study of the intake flow process has not been performed using this method, probably due to robustness issues and simulation effort. In order to evaluate the numerical solution, these results are compared to experimental data collected from a flow test bench constructed specifically for this purpose. Numerical results were satisfactory for the amplitudes and the resonance frequencies in the air intake system and different aspects of the jet flow inside the cylinder are exposed and discussed.

Identiferoai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/110076
Date January 2014
CreatorsFalcão, Carlos Eduardo Guex
ContributorsVielmo, Horacio Antonio, Rech, Charles
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds