Return to search

An investigation of squish generated turbulence in. I.C. engines

Experiments were performed with a single cylinder C.F.R. engine to provide data for the evaluation of the squish designs. Several reference squish chambers were manufactured for the C.F.R. engine. Flow field data was obtained via hot wire anemometer measurements taken in the cylinder during motored operation of the engine. Pressure data recorded while the engine was operated on natural gas yielded mass burn rate information.
Mass burn rate analysis of cylinder pressure data shows the squish design to have greatest impact on the main combustion period (2% to 85% mass burned). A comparison of the reference squish design in these experiments to the disc chamber shows a 32% reduction in the combustion duration and a 30% increase in peak pressure occurring 5 crank angle degrees earlier. The squish-jet design provided the additional effect of a reduction in the ignition delay time (spark to 2% mass burned). The squish-jet design resulted in a reduction of the ignition delay time by 3 crank angle degrees and in a 4% increase in peak pressure occurring 3 crank angle degrees earlier compared to the reference squish chamber. The total combustion duration was 5% less with the squish-jet design. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/25068
Date January 1985
CreatorsCameron, Cecilia Dianne
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0037 seconds