Return to search

Cellular and molecular mechanisms of neurovascular coupling in the retina

Cette thèse de doctorat englobe deux projets majeurs visant à étudier l'interaction entre les nanotubes à effet tunnel inter-péricytes (IP-TNT), le couplage neurovasculaire et la modulation des cellules gliales dans le contexte du glaucome. Le premier projet se concentre sur la caractérisation et l'importance fonctionnelle des IP-TNT dans la régulation du couplage neurovasculaire, tandis que le second projet explore le rôle des cellules gliales, en particulier S100Β, dans la modulation des réponses des péricytes pendant l'hypertension oculaire (HTO), un facteur de risque important pour le développement du glaucome.

Dans le premier projet, nous avons étudié la présence et les implications fonctionnelles des IP-TNT dans l'unité neurovasculaire. Grâce à des techniques d'imagerie avancées et à des expériences d'imagerie en direct chez la souris, nous avons visualisé et caractérisé ces nanotubes à effet tunnel qui relient les péricytes voisins dans la rétine. Nous avons découvert que les IP-TNT jouent un rôle crucial en facilitant la communication intercellulaire et la signalisation calcique entre les péricytes. Ces nanotubes contribuent à la régulation du flux sanguin capillaire et au couplage neurovasculaire, assurant l'apport efficace d'oxygène et de nutriments aux neurones actifs. Nos résultats mettent en lumière les interactions cellulaires complexes au sein de l'unité neurovasculaire et élargissent notre compréhension des mécanismes qui sous-tendent le couplage neurovasculaire.

Dans le second projet, nous nous sommes concentrés sur le rôle des cellules gliales, en particulier la protéine S100Β qui se lie au calcium, dans la modulation des réponses des péricytes au cours de l'HTO, une caractéristique pathologique clé du glaucome. Grâce à une combinaison d'expériences in vivo, d'analyses moléculaires et de techniques d'imagerie, nous avons étudié l'impact de la S100Β sur les niveaux de calcium des péricytes et sur le flux sanguin capillaire. Nous avons observé que la S100Β est régulée à la hausse dans les cellules gliales, y compris les cellules de Müller et les astrocytes, au cours de l'HTO. L'administration de la protéine recombinante exogène S100Β a exacerbé l'influx de calcium intra-péricyte et altéré le flux sanguin capillaire, tandis que le blocage de la fonction S100Β a amélioré les niveaux de calcium des péricytes et rétabli un flux sanguin basal. La neutralisation de la S100Β a également protégé les cellules ganglionnaires de la rétine de la mort induite par l'HTO. Ces résultats mettent en évidence le rôle critique des cellules gliales et de la S100Β dans les déficits du couplage neurovasculaire au cours du glaucome, et donnent un aperçu des cibles thérapeutiques potentielles pour préserver la santé et la fonction de la rétine.

Collectivement, les résultats des deux projets contribuent à notre compréhension de l'interaction complexe entre les IP-TNT, le couplage neurovasculaire et la modulation des cellules gliales dans le contexte du glaucome. En élucidant le rôle des IP-TNT dans la régulation neurovasculaire et l'impact des cellules gliales, en particulier la S100Β, sur les réponses des péricytes, cette thèse fournit des informations précieuses sur les mécanismes sous-jacents de la pathogenèse du glaucome. Ces résultats peuvent ouvrir la voie au développement de stratégies thérapeutiques innovantes ciblant les IP-TNT et la modulation médiée par les cellules gliales afin de préserver la fonction rétinienne et de prévenir la perte de vision dans le glaucome et les maladies neurodégénératives associées / This PhD thesis encompasses two major projects aimed at investigating the interplay between interpericyte tunneling nanotubes (IP-TNTs), neurovascular coupling, and glial cell modulation in the context of glaucoma. The first project focuses on the characterization and functional significance of IP-TNTs in neurovascular coupling regulation, while the second project explores the role of glial cells, particularly S100Β, in modulating pericyte responses during ocular hypertension (OHT), an important risk factor for developing glaucoma.

In the first project, we investigated the presence and functional implications of IP-TNTs in the neurovascular unit. Through advanced imaging techniques and live imaging experiments in mice, we visualized and characterized these tunneling nanotubes connecting neighboring pericytes in the retina. We found that IP-TNTs play a crucial role in facilitating intercellular communication and calcium signaling between pericytes. These nanotubes contribute to the regulation of capillary blood flow and neurovascular coupling, ensuring the efficient delivery of oxygen and nutrients to active neurons. Our findings shed light on the intricate cellular interactions within the neurovascular unit and expand our understanding of the mechanisms underlying neurovascular coupling.

In the second project, we focused on the role of glial cells, specifically the calcium-binding protein S100Β, in modulating pericyte responses during OHT, a key pathological feature of glaucoma. Through a combination of in vivo experiments, molecular analyses, and imaging techniques, we investigated the impact of S100Β on pericyte calcium levels and capillary blood flow. We observed that S100Β is upregulated in glial cells, including Müller cells and astrocytes, during OHT. Administration of recombinant S100Β protein exacerbated intrapericyte calcium influx and impaired capillary blood flow, while blocking S100Β function improved pericyte calcium levels and restored normal blood flow. Notably, S100Β neutralization also protected retinal ganglion cells from OHT-induced death. These findings highlight the critical role of glial cells and S100Β in neurovascular coupling deficits during glaucoma, providing insights into potential therapeutic targets for preserving retinal health and function.

Collectively, the results from both projects contribute to our understanding of the complex interplay between IP-TNTs, neurovascular coupling, and glial cell modulation in the context of glaucoma. By elucidating the role of IP-TNTs in neurovascular regulation and the impact of glial cells, particularly S100Β, on pericyte responses, this thesis provides valuable insights into the underlying mechanisms of glaucoma pathogenesis. These findings may pave the way for the development of innovative therapeutic strategies targeting IP-TNTs and glial cell-mediated modulation to preserve retinal function and prevent vision loss in glaucoma and related neurodegenerative diseases

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32801
Date01 1900
CreatorsVillafranca-Baughman, Deborah
ContributorsDi Polo, Adriana
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0031 seconds