Return to search

Interpolation by rational matrix functions with minimal McMillan degree

Interpolation conditions on rational matrix functions expressed in terms of residues are studied. As a compact way of expressing tangential interpolation conditions of arbitrarily high multiplicity possibly from both sides simultaneously, interpolation conditions are represented in terms of residues. The minimal possible complexity, measured by the McMillan degree, of interpolants is found in terms of the controllability and the observability indices of certain pairs of matrices which are part of given data. An interpolant of such complexity is obtained in realization form. This leads to another approach to the partial realization problem. As a generalization of the well-known Lagrange interpolation problem for scalar polynomials, the problem of seeking for a matrix polynomial interpolant of low complexity is studied. The main tool is state space methods borrowed from systems theory. After adoption of state space methods, problems concerning rational matrix functions are reduced to the realm of linear algebra. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/37745
Date11 May 2006
CreatorsKang, Jeongook Kim
ContributorsMathematics, Ball, Joseph A., Hannsgen, Kenneth B., Herdman, Terry L., Kohler, Werner E., Thomson, James E.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatv, 133 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 23716263, LD5655.V856_1990.K362.pdf

Page generated in 0.0021 seconds