Importance prioritised coding is a principle aimed at improving the interpretability (or image content recognition) versus bit-rate performance of image coding systems. This can be achieved by (1) detecting and tracking image content or regions of interest (ROI) that are crucial to the interpretation of an image, and (2)compressing them in such a manner that enables ROIs to be encoded with higher fidelity and prioritised for dissemination or transmission. Traditional image coding systems prioritise image data according to an objective measure of distortion and this measure does not correlate well with image quality or interpretability. Importance prioritised coding, on the other hand, aims to prioritise image contents according to an 'importance map', which provides a means for modelling and quantifying the relative importance of parts of an image. In such a coding scheme the importance in parts of an image containing ROIs would be higher than other parts of the image. The encoding and prioritisation of ROIs means that the interpretability in these regions would be improved at low bit-rates. An importance prioritised image coder incorporated within the JPEG 2000 international standard for image coding, called IMP-J2K, is proposed to encode and prioritise ROIs according to an 'importance map'. The map can be automatically generated using image processing algorithms that result in a limited number of ROIs, or manually constructed by hand-marking OIs using a priori knowledge. The proposed importance prioritised coder coder provides a user of the encoder with great flexibility in defining single or multiple ROIs with arbitrary degrees of importance and prioritising them using IMP-J2K. Furthermore, IMP-J2K codestreams can be reconstructed by generic JPEG 2000 decoders, which is important for interoperability between imaging systems and processes. The interpretability performance of IMP-J2K was quantitatively assessed using the subjective National Imagery Interpretability Rating Scale (NIIRS). The effect of importance prioritisation on image interpretability was investigated, and a methodology to relate the NIIRS ratings, ROI importance scores and bit-rates was proposed to facilitate NIIRS specifications for importance prioritised coding. In addition, a technique is proposed to construct an importance map by allowing a user of the encoder to use gaze patterns to automatically determine and assign importance to fixated regions (or ROIs) in an image. The importance map can be used by IMP-J2K to bias the encoding of the image to these ROIs, and subsequently to allow a user at the receiver to reconstruct the image as desired by the user of the encoder. Ultimately, with the advancement of automated importance mapping techniques that can reliably predict regions of visual attention, IMP-J2K may play a significant role in matching an image coding scheme to the human visual system.
Identifer | oai:union.ndltd.org:ADTP/264999 |
Date | January 2005 |
Creators | Nguyen, Anthony Ngoc |
Publisher | Queensland University of Technology |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | Copyright Anthony Ngoc Nguyen |
Page generated in 0.0022 seconds