Return to search

Approches statistiques en segmentation : application à la ré-annotation de génome

Nous proposons de modéliser les données issues des technologies de séquençage du transcriptome (RNA-Seq) à l'aide de la loi binomiale négative, et nous construisons des modèles de segmentation adaptés à leur étude à différentes échelles biologiques, dans le contexte où ces technologies sont devenues un outil précieux pour l'annotation de génome, l'analyse de l'expression des gènes, et la détection de nouveaux transcrits. Nous développons un algorithme de segmentation rapide pour analyser des séries à l'échelle du chromosome, et nous proposons deux méthodes pour l'estimation du nombre de segments, directement lié au nombre de gènes exprimés dans la cellule, qu'ils soient précédemment annotés ou détectés à cette même occasion. L'objectif d'annotation précise des gènes, et plus particulièrement de comparaison des sites de début et fin de transcription entre individus, nous amène naturellement à nous intéresser à la comparaison des localisations de ruptures dans des séries indépendantes. Nous construisons ainsi dans un cadre de segmentation bayésienne des outils de réponse à nos questions pour lesquels nous sommes capable de fournir des mesures d'incertitude. Nous illustrons nos modèles, tous implémentés dans des packages R, sur des données RNA-Seq provenant d'expériences sur la levure, et montrons par exemple que les frontières des introns sont conservées entre conditions tandis que les débuts et fin de transcriptions sont soumis à l'épissage différentiel.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00913851
Date15 November 2013
CreatorsCleynen, Alice
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds