Return to search

Effect of barley [beta]-glucans with different molecular weight on the proliferation and metabolism of bifidobacteria.

Lee, Ying. / On t.p. "beta" appears as the Greek letter. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 171-196). / Abstracts in English and Chinese. / Thesis/Assessment Committee --- p.i / Acknowledgement --- p.ii / Abstract --- p.iii / 摘要 --- p.v / List of Tables --- p.vii / List of Figures --- p.x / List of Abbreviations --- p.xvii / Content --- p.xviii / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Probiotics and Prebiotics --- p.1 / Chapter 1.1.1 --- Definitions --- p.1 / Chapter 1.1.2 --- Previous studies --- p.2 / Chapter 1.1.3 --- Properties of enhanced prebiotics --- p.6 / Chapter 1.1.4 --- Synbiotics --- p.7 / Chapter 1.2 --- Colonic fermentation --- p.10 / Chapter 1.2.1 --- Major substrates and metabolites of colonic fermentation --- p.10 / Chapter 1.2.2 --- Health-related effects of Short-Chain Fatty Acids (SCFAs) --- p.12 / Chapter 1.3 --- Bifidogenic effect --- p.14 / Chapter 1.3.1 --- Definition of bifidogenic factor and its health benefits --- p.14 / Chapter 1.3.2 --- Carbohydrate metabolism by related enzymes of bifidobacteria --- p.16 / Chapter 1.3.3 --- Previous studies on bifidogenic effects of carbohydrates --- p.18 / Chapter 1.4 --- Barley β-glucan --- p.18 / Chapter 1.4.1 --- Cereal fibres as prebiotics --- p.18 / Chapter 1.4.2 --- Chemical and physical properties and related health impacts of barley β-glucan --- p.19 / Chapter 1.4.3 --- Impacts on intestinal microecology --- p.21 / Chapter 1.4.4 --- Previous studies on bifidogenic effects of barley β-glucan --- p.21 / Chapter 1.5 --- Methodology for evaluating prebiotic and bifidogenic effect --- p.22 / Chapter 1.5.1 --- In vivo animal models --- p.23 / Chapter 1.5.2 --- Human clinical study --- p.23 / Chapter 1.5.3 --- In vitro fermentation study --- p.24 / Chapter 1.5.3.1 --- Pure culture --- p.24 / Chapter 1.5.3.2 --- Mixed culture bacterial fermenters --- p.25 / Chapter 1.5.3.3 --- Continuous culture systems as in vitro gut models --- p.25 / Chapter 1.5.4 --- Advanced molecular techniques in quantifying intestinal bacteria --- p.26 / Chapter 1.6 --- Factors affecting bifidogenic effect --- p.30 / Chapter 1.6.1 --- Molecular weight --- p.30 / Chapter 1.6.2 --- Species difference --- p.31 / Chapter 1.7 --- Enzymatic activities involved in fermentation of β-glucan --- p.32 / Chapter 1.7.1 --- "Endo-1,3-1,4-(3-glucanase (Lichenase)" --- p.32 / Chapter 1.7.2 --- "Endo-l,4-β-Glucanase (Cellulase)" --- p.33 / Chapter 1.7.3 --- Enzymatic assays --- p.33 / Chapter 1.8 --- Project objectives --- p.36 / Chapter Chapter 2. --- Materials and Methods --- p.37 / Chapter 2.1 --- Materials --- p.37 / Chapter 2.1.1 --- "Trehalose, chitin and lactulose" --- p.37 / Chapter 2.1.2 --- Barley β-glucan --- p.37 / Chapter 2.1.3 --- Pure Bifidobacterium species of human origin --- p.39 / Chapter 2.2 --- Static batch culture fermentation using fecal inoculums --- p.39 / Chapter 2.2.1 --- Substrate preparation --- p.39 / Chapter 2.2.2 --- Human fecal inoculum preparation --- p.41 / Chapter 2.2.3 --- Inoculation of human fecal inoculums --- p.41 / Chapter 2.3 --- Static batch culture fermentation using pure culture of bifidobacteria --- p.42 / Chapter 2.3.1 --- Substrate preparation --- p.42 / Chapter 2.3.2 --- Cultivation of pure bifidobacterium cultures --- p.43 / Chapter 2.3.3 --- Inoculation of bifidobacterium culture --- p.44 / Chapter 2.3.4 --- Growth curve of Bifidobacterium species --- p.44 / Chapter 2.4 --- Dry matter and organic matter disappearance in batch fermentation --- p.47 / Chapter 2.5 --- Gas chromatographic (GC) determination of short-chain fatty acids (SCFAs) --- p.48 / Chapter 2.6 --- MTT assay --- p.51 / Chapter 2.7 --- Microbial identification and enumeration --- p.53 / Chapter 2.7.1 --- Fluorescent in situ hybridization --- p.53 / Chapter 2.7.1.1 --- Oligonucleotide probes for fluorescent in situ hybridization --- p.53 / Chapter 2.7.1.2 --- Cell fixation --- p.54 / Chapter 2.7.1.3 --- In situ hybridization --- p.55 / Chapter 2.7.1.4 --- Automated image analysis --- p.55 / Chapter 2.7.1.5 --- Quantification of bacteria --- p.57 / Chapter 2.7.2 --- Optical Density (OD) measurement --- p.58 / Chapter 2.7.3 --- Direct microscopic count --- p.59 / Chapter 2.8 --- Enzyme assays --- p.60 / Chapter 2.8.1 --- Enzyme extraction --- p.60 / Chapter 2.8.2 --- "Endo-1, 3:1, 4-β-glucanase (Lichenase)" --- p.61 / Chapter 2.8.2.1 --- Principle --- p.61 / Chapter 2.8.2.2 --- Preparation of substrate and assay solutions --- p.63 / Chapter 2.8.2.3 --- Enzyme assay procedures --- p.64 / Chapter 2.8.3 --- "Endo-l,4-β-Glucanase (Cellulase)" --- p.65 / Chapter 2.8.3.1 --- Principle --- p.65 / Chapter 2.8.3.2 --- Dissolution of substrate and preparation of assay solutions --- p.65 / Chapter 2.8.3.3 --- Enzyme assay procedures --- p.66 / Chapter 2.8.4 --- API@ ZYM kit --- p.67 / Chapter 2.8.4.1 --- Principle --- p.67 / Chapter 2.8.4.2 --- Specimen preparation --- p.68 / Chapter 2.8.4.3 --- "Preparation, inoculation and reading of the strips" --- p.70 / Chapter 2.9 --- Statistical analysis --- p.71 / Chapter Chapter 3 --- Results and Discussions --- p.72 / Chapter 3.1 --- Growth curves of Bifidobacterium species --- p.72 / Chapter 3.2 --- Batch in vitro fermentation using human fecal inoculum --- p.79 / Chapter 3.2.1 --- Dry matter and organic matter disappearance --- p.79 / Chapter 3.2.2 --- Colonic bacterial profile evaluated by FISH with CellC software --- p.81 / Chapter 3.2.2.1 --- Total colonic bacteria --- p.81 / Chapter 3.2.2.2 --- Bifidobacterial growth --- p.82 / Chapter 3.2.3 --- SCFA production --- p.86 / Chapter 3.2.3.1 --- Acetate --- p.88 / Chapter 3.2.3.2 --- Propionate --- p.89 / Chapter 3.2.3.3 --- Butyrate --- p.89 / Chapter 3.2.3.4 --- Total SCFA production --- p.90 / Chapter 3.2.3.5 --- Molar ratio of SCFAs --- p.92 / Chapter 3.3 --- In vitro fermentation of barley β-glucans with different molecular weight using pure culture of Bifidobacterium species --- p.95 / Chapter 3.3.1 --- Dry matter and organic matter disappearance --- p.96 / Chapter 3.3.2 --- Evaluation of bifidobacterial growth by optical density (OD) --- p.100 / Chapter 3.3.3 --- Time course study of SCFAs production --- p.109 / Chapter 3.3.3.1 --- "Total and individual SCFAs (Acetate, Propionate and Butyrate) production" --- p.109 / Chapter 3.3.4 --- Correlation between various parameters related to fermentation --- p.124 / Chapter 3.4 --- Enzymatic activities in 2 selected Bifidobacterium species during fermentation --- p.125 / Chapter 3.4.1 --- Dry matter and organic matter disappearance --- p.126 / Chapter 3.4.2 --- Bifidobacterial growth evaluated by direct microscopic count --- p.128 / Chapter 3.4.3 --- Time course study of SCFAs production --- p.131 / Chapter 3.4.3.1 --- "Total and individual SCFAs production (Acetate, Propionate and Butyrate)" --- p.131 / Chapter 3.4.3.2 --- MTT assay --- p.137 / Chapter 3.4.3.2.1 --- Effect of metabolites in the fermentation medium on the proliferation ofSW620 --- p.137 / Chapter 3.4.3.2.2 --- Effect of metabolites in the fermentation medium on the proliferation of Caco-2 --- p.145 / Chapter 3.4.4 --- Enzyme assays using commercial kits --- p.153 / Chapter 3.4.4.1 --- API @ZYM assay --- p.153 / Chapter 3.4.4.2 --- Efficiency of intra-cellular enzyme extraction using labiase --- p.156 / Chapter 3.4.5 --- Time course enzyme assays --- p.157 / Chapter 3.4.5.1 --- Lichenase activity assay --- p.157 / Chapter 3.4.5.2 --- Cellulase activity assay --- p.160 / Chapter Chapter 4. --- Conclusions and Future work --- p.168 / References --- p.171

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326123
Date January 2007
ContributorsLee, Ying., Chinese University of Hong Kong Graduate School. Division of Food and Nutritional Sciences.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xxiii, 196 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.009 seconds