Return to search

Étude de l'interaction bidirectionnelle entre les flavan-3-ols et le microbiote intestinal à l'aide d'une approche multi-omiques

Titre de l'écran-titre (visionné le 1 novembre 2023) / Longtemps, les effets bénéfiques sur la santé des flavan-3-ols, la classe de (poly)phénols la plus consommée dans la diète occidentale, ont été associés à leur effet antioxydant dans l'organisme. Toutefois, moins de 10% de ces molécules sont absorbées dans l'intestin grêle, ce qui ne permet pas de procurer un effet antioxydant significatif dans l'organisme. Puisque la majorité des flavan-3-ols (> 90%) se rend jusqu'au côlon, l'interaction bidirectionnelle entre les flavan-3-ols et le microbiote intestinal expliquerait plutôt leurs effets sur la santé. D'une part, certaines bactéries du microbiote intestinal sont en mesure de dégrader les flavan-3-ols en métabolites bioactifs et biodisponibles. D'autre part, les flavan-3-ols peuvent moduler la composition du microbiote intestinal en favorisant la croissance des bactéries bénéfiques et en inhibant les bactéries pathogènes. De plus, les résultats des grandes études cliniques visant à démontrer l'effet des flavan-3-ols sur la santé sont souvent très hétérogènes en raison de la grande variabilité inter-individuelle de la capacité du microbiote intestinal à convertir ces molécules en métabolites. Afin de caractériser cette variabilité inter-individuelle, il a été proposé de stratifier la population en phénotypes métaboliques définis par la production de métabolites issus de la dégradation de (poly)phénols spécifiques par le microbiote intestinal, nommés métabotypes, mais aucune définition claire n'a encore été obtenue avec les flavan-3-ols. Le but de cette thèse est de caractériser l'interaction bidirectionnelle entre les flavan-3-ols et le microbiote intestinal, ainsi que la variabilité inter-individuelle qui en découle. Plus spécifiquement, ces travaux visent à améliorer les méthodes d'analyses des métabolites microbiens de flavan-3-ols, à définir les métabotypes associés au métabolisme des flavan-3-ols par le microbiote intestinal et à évaluer la capacité de ces molécules à moduler positivement la composition du microbiote intestinal. Dans un premier temps, une technique d'hydrolyse enzymatique a été mise au point afin de pouvoir quantifier efficacement les métabolites microbiens de flavan-3-ols dans l'urine à l'aide de standards analytiques abordables et disponibles commercialement. De plus, une nouvelle méthode de quantification à haut débit a été développée afin de réduire le temps d'analyse d'environ 15 minutes à seulement quelques secondes. Ensuite, cette approche a été appliquée à une étude clinique où 39 sujets ont consommé un extrait de canneberge riche en flavan-3-ols durant 4 jours. De plus, les échantillons fécaux prélevés avant l'intervention ont permis d'effectuer une cinétique de dégradation in vitro (i) d'épicatéchine, un flavan-3-ol monomérique pur servant de modèle, et des extraits purifiés en flavan-3-ols polymériques (ii) d'aronie et (iii) de canneberge durant 24h. L'étude du métabolisme microbien de l'épicatéchine a mis en évidence que les sujets se regroupaient en métabotypes sur la base de leur vitesse de métabolisation de ce substrat et de leur production de métabolites spécifiques. En effet, des métabolisateurs lents et rapides, ainsi que trois profils métaboliques distincts, associés à des microbiotes intestinaux spécifiques, ont pu être identifiés. Toutefois, il n'a pas été possible de définir des métabotypes associés au métabolisme des flavan-3-ols d'aronie et de canneberge. Ces cinétiques ont plutôt mis en évidence que les flavan-3-ols polymériques d'aronie et de canneberge n'étaient que très peu dégradés (< 1%) par le microbiote intestinal. Ce résultat a également été confirmé par l'analyse de l'excrétion urinaire des métabolites microbiens de flavan-3-ols avant et après la supplémentation avec l'extrait de canneberge. Toutefois, l'étude métataxonomique des échantillons fécaux des 39 sujets suite à la supplémentation en flavan-3-ols de canneberge a permis de démontrer un effet bifidogénique, c'est-à-dire une stimulation de la croissance des espèces bactériennes associées au genre Bifidobacterium. De plus, ces travaux ont permis de démontrer que l'extrait de canneberge modulait différemment le microbiote intestinal des individus, dépendamment de sa composition initiale. En effet, l'extrait de canneberge permettait de favoriser la croissance de Fæcalibacterium chez les sujets ayant Prevotella dans leur microbiote initial. Ces résultats confirment que les flavan-3-ols polymériques sont capables de moduler le microbiote intestinal, et ce malgré leur faible métabolisation. En somme, l'approche multidisciplinaire, allant de la chimie analytique à la microbiologie, utilisée dans le cadre de cette thèse a permis de caractériser l'interaction bidirectionnelle entre les flavan-3-ols et le microbiote intestinal, autant in vitro qu'in vivo, et de mieux comprendre la variabilité inter-individuelle qui y est associée. Ces travaux pavent la voie au développement d'approches de nutrition personnalisée. / Health benefits of flavan-3-ols, the most consumed (poly)phenols class in the Western diet, were previously attributed to their antioxidant activity within the host. However, less than 10% of these molecules are absorbed in the small intestine. Hence, they cannot exert significant antioxidant activity in the host. Since the majority (> 90%) reaches the colon, their bidirectional interaction with the gut microbiota rather explains their positive effects on health. On the one hand, specific gut bacteria can convert flavan-3-ols into bioavailable and potentially bioactive metabolites. On the other hand, flavan-3-ols can positively modulate the composition of the gut microbiota by stimulating the growth of beneficial bacteria and by inhibiting the pathogenic ones. In addition, the results obtained in large clinical trials attempting to demonstrate the effect of flavan-3-ols are heterogeneous due to the high inter-individual variability of the capacity of the gut microbiota to convert these molecules into metabolites. To characterize this inter-individual variability, it has been proposed to stratify the population into metabolic phenotypes defined by the production of metabolites from the metabolism of specific (poly)phenols by the gut microbiota, so called metabotypes, but no clear definition has yet been obtained with flavan-3-ols. This thesis aimed to characterize the bidirectional interaction between flavan-3-ols and gut microbiota, as well as the resulting inter-individual variability. Specifically, the goals were to improve the methods for microbial flavan-3-ols metabolites quantification, to define the metabotypes associated with the metabolism of flavan-3-ols by the gut microbiota and to assess the capacity of these molecules to positively modulate the composition of the gut microbiota. First, a method using enzymatic hydrolysis was developed to accurately quantify microbial flavan-3-ols metabolites in urine with affordable and commercially available analytical standards. In addition, a new high-throughput method was developed to reduce the analysis time from around 15 minutes to just a few seconds. Then, this approach was applied to a clinical study involving 39 subjects who consumed a flavan-3-ols-rich cranberry extract for 4 days. In addition, fecal samples collected before the intervention were used to perform in vitro degradation kinetics of (i) epicatechin, a pure monomeric flavan-3-ol used as a model, and purified polymeric flavan-3-ols from (ii) aronia and (iii) cranberry for 24h. Results obtained from microbial metabolism of epicatechin revealed that subjects clustered into metabotypes based on their conversion rate of epicatechin and on the production of specific metabolites. In fact, slow and fast metabolizers, as well as 3 distinct metabolic profiles, associated with specific gut microbiota, were identified. However, it was not possible to define metabotypes associated with the metabolism of flavan-3-ols from aronia and cranberry. These experiments rather demonstrated that the polymeric flavan-3-ols from aronia and cranberry were only slightly degraded (< 1%) by the intestinal microbiota. This result was also confirmed by the analysis of urinary excretion of microbial flavan-3-ol metabolites before and after supplementation with the cranberry extract. However, metataxonomics analysis of the fecal samples of the 39 subjects following supplementation with cranberry extract demonstrated a bifidogenic effect, i.e. stimulation of the growth of bacterial species associated with the genus Bifidobacterium. In addition, we demonstrated that cranberry extract supplementation differently modulated the gut microbiota of the participants, depending on its initial composition. Indeed, cranberry extract promoted the growth of Fæcalibacterium in subjects with Prevotella in their initial microbiota. These results confirm that polymeric flavan-3-ols can modulate the gut microbiota, despite their low metabolism. In conclusion, the multidisciplinary approach, ranging from analytical chemistry to microbiology, used in this thesis allowed to characterize the bidirectional interaction between flavan-3-ols and the intestinal microbiota, both in vitro and in vivo, and to better understand the inter-individual variability associated with it. This work paves the way for the development of personalized nutrition approaches.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/128186
Date25 March 2024
CreatorsLessard-Lord, Jacob
ContributorsDesjardins, Yves
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxvi, 304 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0033 seconds