Return to search

ACCURATE HIGH ORDER COMPUTATION OF INVARIANT MANIFOLDS FOR LONG PERIODIC ORBITS OF MAPS AND EQUILIBRIUM STATES OF PDE

The study of the long time behavior of nonlinear systems is not effortless, but it is very rewarding. The computation of invariant objects, in particular manifolds provide the scientist with the ability to make predictions at the frontiers of science. However, due to the presence of strong nonlinearities in many important applications, understanding the propagation of errors becomes necessary in order to quantify the reliability of these predictions, and to build sound foundations for future discoveries.
This dissertation develops methods for the accurate computation of high-order polynomial approximations of stable/unstable manifolds attached to long periodic orbits in discrete time dynamical systems. For this purpose a multiple shooting scheme is applied to invariance equations for the manifolds obtained using the Parameterization Method developed by Xavier Cabre, Ernest Fontich and Rafael De La Llave in [CFdlL03a, CFdlL03b, CFdlL05]. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_42610
ContributorsGonzalez, Jorge L. (author), Mireles-James, Jason (Thesis advisor), Florida Atlantic University (Degree grantor), Department of Mathematical Sciences, Charles E. Schmidt College of Science
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format155 p., application/pdf
RightsCopyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds