Return to search

Inverse Analysis for Estimating Friction Coefficient in Strip Rolling

Abstract
The rolling is an efficient and economical approach for the manufacturing of strip or plate metals, it plays an important role because of its versatility and its high production rate in the manufacture of various products with uniform cross-sectional area. Without the knowledge of the influences of the variables such as friction conditions, material properties, and workpiece geometry on the process mechanics, it will not be possible to design and control the equipment adequately, or to predict and prevent the occurrence of failures.
According to modeling by numerical has become a major tool in rolling research. By using the proper criterion, de-pending upon the production requirements along with the modeling results, the process efficiency, productivity and quality can be increased and the down time of the mill and cost operation can be reduced.
In this study, investigated that it do not consider to work hardening and consider to work hardening during the rolling process from Von Karman theory. We can realize friction coefficient, reduction ratio, rolling force, rolling torque, neutral point, and pressure distribution relation, then from measuring rolling force, torque, neutral point can inverse to solve friction coefficient and pressure distribution. Result that we found the error of direct and inverse solution about rolling friction coefficient was less than 5 %, and the coef-ficient of friction was found to increase with reduction and rolling force and neutral point.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0826103-231136
Date26 August 2003
CreatorsLin, Chih-Pin
ContributorsJ.N.Aoh, Rong-Tsong Lee, Yuang-Cherng Chiou
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0826103-231136
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0017 seconds