In this thesis three methods LMGS, TQR and GR are applied to
solve an inverseeigenvalue problem. We list the numerical
results and compare the accuracy of the computed Jacobi matrix $T$ and the associated orthogonal matrix $Q$, wherethe columns of $Q^T$ are the eigenvectors of $T$. In the application of this inverse eigenvalue problem, the Fourier coefficients of $h(x)=e^x$ relative to the orthonormal polynomials associatedwith $T$ are evaluated, and these values are used to compute the least squarescoefficients of $h$ relative to the Chebyshev polynomials. We list thesenumerical results and compare them as our conclusion.
Identifer | oai:union.ndltd.org:CHENGCHI/B2002002886 |
Creators | 范慶辰, Fan, Ching chen |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 英文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.002 seconds