Return to search

Determination of Temperature-dependent Thermophysical Properties during Rapid Solidification of Metallic Alloys

Recent global efforts have focused on developing new lightweight alloys specifically designed for high-pressure die casting (HPDC) processes, aiming to achieve the lightweight of electrified vehicles. HPDC offers a distinct advantage by allowing the production of neat-net-shape automotive components, minimizing the need for further processing. An inherent characteristic of HPDC is its rapid cooling rates, making the understanding and characterization of the thermophysical properties of these newly developed lightweight alloys under high cooling rates a must. These properties have a significant effect on controlling the HPDC process and developing suitable filling and solidification models to simulate the HPDC process intricacies for commercial production adaptation. The thermophysical properties of these alloys are shown to exhibit considerable variability with temperature, particularly under rapid solidification conditions, like in HPDC. Hence, an essential step in developing such alloys is to thoroughly investigate the variation of their thermophysical properties with temperature under high cooling rates.
To fulfill such a need, an experimental setup has been developed to allow the solidification of molten metal samples under varying cooling rates using a set of impinging water jets. An inverse heat transfer algorithm has been developed to estimate the thermal conductivity and thermal diffusivity as a function of the temperature of the solidifying samples under high cooling rates.
To validate the accuracy of the inverse heat transfer algorithm and the experimental methodology, a set of experiments has been carried out using pure Tin, which is a well-characterized material. Its thermal diffusivity and thermal conductivity are readily available in the literature. The estimated thermal diffusivity and thermal conductivity of Tin have been compared with the published data. The estimated thermal diffusivity and conductivity of the solid phase were in good agreement with the published values. A maximum deviation ranging from +10.1% to -3.47% was observed in the estimated thermal diffusivity. The maximum deviation in the estimated thermal conductivity was between +7.8% and -13.6%. Higher deviations have been observed in the estimated thermal diffusivity and conductivity of the liquid phase with deviations in the range of +33.71% to -4.86% and +0.76% to 26.53%, respectively. The higher deviations observed for the liquid phase might be attributed due to the natural convection that developed in the tested liquid sample. The effect of natural convection was examined using a set of numerical simulations that confirmed the existence of a convection-induced movement within the liquid phase.
A sensitivity analysis was carried out to examine the impact of the accuracy of thermocouple positions and the effect of temperature sensing accuracy on the estimated thermal properties. / Thesis / Master of Applied Science (MASc) / An inverse heat transfer algorithm along with an experimental setup has been developed to estimate the temperature-dependant thermophysical properties during solidification of metallic alloys under high cooling rates. To verify the accuracy of the developed algorithm and the experimental setup the estimated thermal conductivity and diffusivity of pure Tin have been compared with data available in the literature. The results showed reasonable agreement.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/29687
Date January 2024
CreatorsBasily, Remon
ContributorsHamed, Mohamed, Shankar, Sumanth, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0083 seconds