Return to search

Simetria na música pós-tonal. Rede de projeções por inversão / Symmetry in post-tonal music. Inversional pitch-class set network

O objetivo principal desta pesquisa é o aprimoramento de ferramentas teóricas desenvolvidas para a análise harmônica de obras de vanguarda do início do século XX e afins (incluindo algumas obras de Villa-Lobos), destacando a utilização da simetria intervalar como fator de coerência em amostras de músicas deste período e correlacionadas. Observaremos principalmente aspectos relacionados a presença de padrões intervalares simétricos por reflexão inerentes ao sistema cromático. Procurando estabelecer um arcabouço teórico consistente que contemplasse as demandas circunscritas nas músicas pós-tonais analisadas, buscamos entender a importância da simetria entre alturas em níveis estruturais mais profundos supondo que a proporcionalidade intervalar pudesse corroborar no delineamento harmônico das obras escolhidas. Nossa proposta de estudo é calcada em fundamentos e conceitos desenvolvidos por teóricos ligados às pesquisas sobre a teoria dos conjuntos, com destaque para os textos de Joseph Straus (2005). Em outra esfera, elencamos ferramentas teóricas de uma segunda abordagem metodológica que cada vez mais ganha destaque entre musicólogos que atuam no campo da análise de obras pós-tonais - a teoria neorriemanniana - em particular observando os conceitos apresentados por David Lewin (1982; 1987) e os seus desdobramentos discutidos por Richard Cohn (1998; 2012), autor em torno do qual gravita a vertente secundária conhecida como teoria transformacional. A partir da intersecção entre estas duas correntes teóricas pós-tonais escolhidas, desenvolvemos uma terceira proposta metodológica aparentemente inédita - que chamaremos neste trabalho de teoria da inversão - um desdobramento decorrente do aperfeiçoamento de conceitos da teoria neorriemanniana de David Lewin e Brian Hyer que envolvem a reflexão intervalar de conjuntos de alturas, parâmetros não contemplados pela recente teoria transformacional de Dmitri Tymoczko (2007; 2011) e Richard Cohn (1998; 2012). No âmbito desta proposição, seguindo a suposição levantada por Robert Morris (2007) de que existem aspectos fundamentais em comum entre as principais correntes teóricas dedicadas à música pós-tonal, exploramos alguns apontamentos deste autor que nos direcionaram à apropriação de ferramentas pertencentes à teoria dos grupos - campo de conhecimento oriundo da matemática, especializada no estudo de simetria utilizando estruturas algébricas conhecidas como matrizes. Deste processo surge a descoberta de um conglomerado de classes de conjuntos que podem ser alinhados em uma mesma rede de projeções por inversão. Avaliando os aspectos inerentes a este sistema apresentado, identificamos a construção de toda uma estrutura em disposição espelhada, revelando a existência de uma simetria transversal que abrange um grande número de conjuntos de alturas inerentes ao universo das doze alturas, confirmando a hipótese levantada por Robert Morris. Verificamos ainda outras correlações entre os conjuntos correspondentes presentes nesta rede de projeções por inversão - relações por multiplicação pelo fator M5 e M7 e invariância entre entradas de vetores intervalares (RAHN, 1980; OLIVEIRA, 2007) - que corroboram a constatação desta dimensão simétrica envolvendo o campo harmônico cromático. Outra proposta neste trabalho foi a ampliação na gama de possibilidades de utilização de redes de alturas (Tonnetze) - ferramenta emblemática da teoria neorriemanniana - apresentando outras opções de conjuntos para os desdobramentos por inversões, indo além dos convencionais conjuntos 3-11 (tricorde Maior e menor) e 4-27 (tetracordes Maior 7 e meio diminuto) recorrentes em formatações tradicionais. Seguindo neste propósito, desenvolvemos aprofundamentos abrangendo a remota rede de alturas de Euler com o tetracorde 4-20 e o Tonnetz tridimensional de Gollin (1998), alinhando esta pesquisa também aos resultados encontrados por Henri Pousseur ([1968], 2009) em suas \"redes harmônicas\" e aos conceitos desenvolvidos por George Perle (1977) e sua \"teoria dos ciclos intervalares\". / The main objective of this research is to improve the theoretical tools developed for the harmonic analysis of the early works of the early 20th century and related works (including some works by Villa-Lobos), highlighting the use of interval symmetry as a coherence factor in samples of pieces from this period and correlated. We will mainly observe aspects related to the presence of symmetrical interval patterns by reflection inherent to the chromatic system. We will mainly observe aspects related to the presence of symmetrical interval patterns by reflection inherent to the chromatic system. In order to establish a consistent theoretical framework that contemplates the circumscribed demands in the analyzed post-tonal pieces, we sought to understand the importance of symmetry by comparing pitches at deeper structural levels, assuming that the interval proportionality could corroborate the harmonic delineation of the chosen works. Our proposal is based on fundamentals and concepts developed by theorists related to research on pitch-class set theory, especially the texts of Joseph Straus (2005). Our study proposal is based on fundamentals and concepts developed by theorists related to research on pitch-class set theory, especially the texts of Joseph Straus (2005). In another sphere, we have ellipped theoretical tools of a second methodological approach that is increasingly prominent among musicologists working in the field of post-tonal analysis - neo-Riemannian theory - in particular, observing the concepts presented by David Lewin (1982, 1987) and its ramifications discussed by Richard Cohn (1998, 2012), author around which gravitates the secondary slope known as transformational theory. From the intersection between these two post-tonal theoretical currents chosen, we have developed a third methodological proposal that is apparently unpublished - which we will call inversional pitch-class set theory - an unfolding resulting from the refinement of David Lewin and Brian Hyer\'s concepts of neo-Riemannian theory involving interval analysis of sets of pitch-class sets, parameters not contemplated by the recent transformational theory of Dmitri Tymoczko (2007; 2011) and Richard Cohn (1998, 2012). In this context, following the assumption made by Robert Morris (2007) that there are fundamental aspects in common among the main theoretical currents dedicated to post-tonal music, we explore some notes of this author that have directed us to the appropriation of tools belonging to the theory of groups - field of knowledge from mathematics, specialized in the study of symmetry using algebraic structures known as matrices. From this process comes the discovery of a conglomeration of pitch-class sets that can be aligned in the same inversional pitch-class set network. Evaluating the inherent aspects of this system, we identified the construction of a whole structure in a mirrored arrangement, revealing the existence of a transversal symmetry that covers a substantial number of pitch-class sets inherent to the universe of the twelve pitches, confirming the hypothesis raised by Robert Morris. We also verified other correlations between the corresponding sets in this inversional pitch-class set network - relations by multiplication by the factor M5 and M7 and invariance between interval vectors (RAHN, 1980; OLIVEIRA, 2007) - which corroborate the observation of this symmetrical dimension involving the chromatic harmonic field. Another proposal in this work was the expansion of the range of possibilities of use of pitch-classes networks (Tonnetze) - emblematic tool of the neo-Riemannian theory - presenting other options of sets for the inversion unfolding, going beyond the conventional sets 3-11 (Major and minor chord) and 4-27 (Major 7th and half-diminished 7th chords) recurrent in traditional formatting. Following this, we developed deepening studies covering the remote pitch-class network of Euler with the tetrachord 4-20 and Gollin\'s three-dimensional Tonnetz (1998), aligning this research also with the results found by Henri Pousseur ([1968], 2009) about his harmonic networks and the concepts developed by George Perle (1977) and his \"interval cycles theory\".

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-27122018-104544
Date07 November 2018
CreatorsAlbuquerque, Joel Miranda Bravo de
ContributorsSalles, Paulo de Tarso Camargo Cambraia
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0033 seconds