O uso crescente de fontes alternativas de energia exige conversores de energia capazes de aumentar sua tensão nos terminais e conectá-los ao sistema de distribuição. Neste contexto, o conversor step-up clássico (conversor de potência CC/CC) e o inversor de fonte de tensão (VSI) são as soluções mais aplicadas para processar o fluxo de energia da fonte para a rede. No entanto, apresentam um baixo rendimento devido ao duplo estágio de conversão, isto é, a energia flui também através dos conversores de energia CC/CC e CC/CA. Para evitar esse tipo de desvantagem, no início da última década, o Z-Source-Inverter (ZSI) foi introduzido. Nesta nova solução, o conversor de energia CC/CC responsável por elevar a tensão nos terminais do conversor foi removido e uma rede de impedância LCLC foi adicionada com duas tarefas, ou seja, aumentar a tensão do terminal e melhorar a eficiência do ZSI. Infelizmente, os trabalhos da literatura não apresentaram um modelo matemático generalizado para apoiar os projetistas de conversores de potência na análise de estabilidade, projeto de controladores ou avaliar o ganho de tensão do conversor. Neste sentido, esta dissertação propõe o desenvolvimento de um modelo matemático completo e a análise de estabilidade da planta. Para suportar todo o desenvolvimento teórico, foi realizado um conjunto de análises no domínio do tempo e da frequência. Por fim, verificou-se o controle da tensão do elo CC para suportar todas as afirmações apresentadas neste trabalho (controle da tensão no capacitor da rede Z). / The growing use of alternative energy sources require power converters able to boost their terminal voltage and connect them to the distribution system. In this context, the classical step-up converter (DC/DC power converter) and the voltage source inverter (VSI) are the most applied solutions to process the power flow from the source to the grid. However, they present a low efficient because of the double stage of conversion, i.e. the power flows through the DC/DC and DC/AC power converters as well. To avoid this type of drawback, in the beginning of the last decade the impedance source inverter (ZSI) was introduce. In this new solution, the DC/DC power converter responsible for boosting the voltage at the DC-source terminals was removed and a Z (LCLC-network) was added with two tasks, i.e. boost the DC-source terminal voltage and improve the ZSI efficiency. Unfortunately, the papers in the literature did not present a generalized mathematical model to support designers of power converters in the analysis of stability, design of controllers or evaluate the voltage gain of the converter. In this sense, this thesis proposes the development of a complete mathematical model and the stability analysis of the plant. To support all the theoretical development a set of analysis in the time and frequency-domain was performed. Finally, the control of DC-link voltage was verified to support all the statements presented in this thesis (control on the Z-network voltage capacitance).
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-04022019-091341 |
Date | 09 November 2018 |
Creators | Mateus Siqueira Quinalia |
Contributors | Ricardo Quadros Machado, João Onofre Pereira Pinto, José Antenor Pomilio |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds