Intestinal motility assessment with video capsule endoscopy arises as a novel and challenging clinical fieldwork. This technique is based on the analysis of the patterns of intestinal contractions obtained by labelling all the motility events present in a video provided by a capsule with a wireless micro-camera, which is ingested by the patient. However, the visual analysis of these video sequences presents several important drawbacks, mainly related to both the large amount of time needed for the visualization process, and the low prevalence of intestinal contractions in video. In this work we propose a machine learning system to automatically detect the intestinal contractions in video capsule endoscopy, driving a very useful but not feasible clinical routine into a feasible clinical procedure. Our proposal is divided into two different parts: The first part tackles the problem of the automatic detection of phasic contractions in capsule endoscopy videos. Phasic contractions are dynamic events spanning about 4-5 seconds, which show visual patterns with a high variability. Our proposal is based on a sequential design which involves the analysis of textural, color and blob features with powerful classifiers such as SVM. This approach appears to cope with two basic aims: the reduction of the imbalance rate of the data set, and the modular construction of the system, which adds the capability of including domain knowledge as new stages in the cascade. The second part of the current work tackles the problem of the automatic detection of tonic contractions. Tonic contractions manifest in capsule endoscopy as a sustained pattern of the folds and wrinkles of the intestine, which may be prolonged for an undetermined span of time. Our proposal is based on the analysis of the wrinkle patterns, presenting a comparative study of diverse features and classification methods, and providing a set of appropriate descriptors for their characterization. We provide a detailed analysis of the performance achieved by our system both in a qualitative and a quantitative way.
Identifer | oai:union.ndltd.org:TDX_UAB/oai:www.tdx.cat:10803/5784 |
Date | 12 June 2006 |
Creators | Vilariño Freire, Fernando Luis |
Contributors | Radeva, Petia, Universitat Autònoma de Barcelona. Departament de Ciències de la Computació |
Publisher | Universitat Autònoma de Barcelona |
Source Sets | Universitat Autònoma de Barcelona |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs., info:eu-repo/semantics/openAccess |
Page generated in 0.0087 seconds