With the increase of devices on the internet that comes coupled with the growing IoT field, there is a high amount of research being conducted on the topic. Whilst much has been done to make these systems more scalable and resilient by replacing the current standard architecture with a decentralized one, the applied models mostly focus on the implementation details of such a system, and little thought is placed on the algorithms used to structure the architecture itself. Instead, one of the many, already defined protocols is used, and the system is built around this. These protocols, whilst elegant and outright ingenious in their own nature are initially intended for other applications, and hence do not take any advantage of the domain specifics of IoT, and hence the implemented solutions are sub-optimal in terms of performance and overhead. This thesis attempts to bridge that gap by first providing data on an existing IoT system, and then using the data to leverage the modifications of the prevailing protocol for decentralized peer-to-peer architectures. This is done by introducing groups in the ID scheme of the system, and thus greatly modifying the internal structure, forcing devices with interest in each other to be placed closely in the structure. The consequence of this is that there is a major reduction of overhead in searching for devices, bringing the total number of devices required to be contacted for normal use-cases down substantially.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mau-53549 |
Date | January 2022 |
Creators | Denison, Timothy |
Publisher | Malmö universitet, Institutionen för datavetenskap och medieteknik (DVMT) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds