Return to search

Evaluating The Performance of Machine Learning on Different Devices

IoT-enheter blir allt populärare i takt med att de blir kraftfullare och skalbara. Därför var det viktigt att undersöka prestandan hos IoT-enheter när det kommer till maskininlärning. Huvudsyftet med detta arbete är att implementera två maskininlärningsmodeller på en bärbar dator och en Raspberry Pi 4 för att bestämma vilka maskininlärningsuppgifter som kan utföras på dessa enheter genom att sätta upp scenarier där vi kan testa låg-, medel- och högkrävande maskininlärning uppgifter på båda enheterna, som också möjliggör noggrann mätning. En bärbar dator användes som referenspunkt för att se om Raspberry Pi 4 kan prestera bra jämfört med en modern bärbar dator när de utför maskininlärningsuppgifter. Tensorflow valdes att användas för att implementera de två maskininlärningsmodellerna och för att mäta processen. Noggrannheten och träningstiden mättes för att bestämma prestandan för modellerna på de två enheterna. Tre datauppsättningar valdes ut för att användas för att träna och testa modellerna på de två enheterna, dessa datauppsättningar innehöll bilder, den första datauppsättningen bestod av mycket små bilder, och den andra bestod av lite större bilder, den sista datauppsättningen bestod av ännu större bilder, detta gjordes för att testa tre olika svårighetsgrader för modellerna på de två olika enheterna. Efter att träningen och utvärdering av modellerna slutförts på båda enheterna med hjälp av de tre datauppsättningarna analyserades de resulterande mätningarna och diskuterades sedan för att nå en slutsats. Slutsatsen från detta arbete var att endast lågnivåmaskininlärningsuppgifter är ett gångbart alternativ nu på grund av den extrema tid som krävs för att träna modellen för bildklassificering, men om tiden inte är en viktig faktor, skulle Raspberry Pi 4 efter en lång tid fortfarande uppnå samma noggrannhet som den bärbara datorn gjorde. / IoT devices are becoming increasingly popular as they are becoming more powerful and scalable. Therefor it was important to examine the potential of IoT devices when it comes to Machine Learning. The main objective of this work is to implement two machine learning models on a laptop and a Raspberry Pi 4 to determine what machine learning tasks that can be performed on these devices by setting up scenarios where we can test low, mid and high demanding machine learning tasks on both devices that also allows for accurate measurement being taken. A laptop was used a reference point to see if the Raspberry Pi 4 can perform well relative to a modern-day laptop when performing machine learning tasks. Tensorflow was chosen to be used to implement the two machine learning models and to measure the process. The accuracy and training time were measured to determine the performance of the models on the two devices. Three datasets were chosen to be used for training and testing the models on the two devices, these datasets contained images, the first dataset consisted of very tiny images, and the second one consisted of slightly larger images, the last dataset consisted of very large images, this was done to test three different levels of difficulty for the models. After training and evaluation of the models were completed on both devices using the three datasets, the resulting measurements were analyzed and then discussed to reach the conclusion. The conclusion from this work was that only low-tier machine learning tasks are a viable option now because of the extreme amount of time required to train the model for image classification, however if time isn’t an important factor, the Raspberry Pi 4 would after a long time still reach the same accuracy as the laptop did.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-45300
Date January 2022
CreatorsZangana, Robar
PublisherMittuniversitetet, Institutionen för informationssystem och –teknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds