Background: Dental filling materials are used on a regular basis by dentists. Commonly used filling materials on the current market are resin composites and glass ionomers cements. However, new materials continue to be presented on the market with claimed improved physical and chemical properties, among them Predicta Bioactive Bulk. Aim: The aim of this study was to investigate the surface roughness and ion release properties of a bioactive restorative material. Methods: Surface roughness and ion release properties of a new material, Predicta Bioactive Bulk, was compared to Ceram.X Spectra ST and Fuji LC II. The results were analyzed using Microsoft Office Excel and IBM SPSS Statistics software. Results: The material with the lowest surface roughness at baseline was Predicta Bioactive Bulk and Ceram.X Spectra ST had the highest value. After polishing/finishing CeramX showed the lowest surface roughness and Fuji II LC had the highest value. After the water aging-test, submerged for two weeks, Ceram.X Spectra ST exhibited the lowest value of surface roughness and Fuji II LC showed the highest value. The material with the highest fluoride release after two and seven days was Fuji II LC and Predicta Bioactive Bulk hade the lowest. Conclusion: The surface roughness of Predicta Bioactive Bulk was comparable to CeramX in the test regarding surface roughness. Therefore, it can be concluded the surface roughness is neither better nor worse than CeramX. From the study it can also be concluded that Predicta Bioactive Bulk had very low fluoride ion release properties.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-201386 |
Date | January 2022 |
Creators | Berglund, Joel, Adell, Oscar |
Publisher | Umeå universitet, Institutionen för odontologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds