Return to search

Analysis of Radicals in Gas-Liquid Electrical Discharges

Electrical discharge is a commonly used method to produce ions and radicals that can be used for degrading compounds as well as for chemical synthesis. Previously, the application of electrical discharges has been studied in liquids such as water and alcohols to produce hydrogen peroxide and hydrogen and to destroy organic compounds in the water and gas phases. Recently low power gas-liquid electric discharges have been employed to increase efficiency for hydrogen peroxide and oxidized products for synthesis or degradation. Determination and analysis of the intermediate radicals produced in the plasma has not been studied intensively for discharges at the gas-liquid interface such as aerosol sprays and thin liquid films. According to theoretical models based on reaction kinetics in plasma these radicals such as hydroxyl radicals play an important role in formation of hydrogen peroxide. However, there may be excess hydroxyl radicals formed and not involved in the formation of hydrogen peroxide. The main goal of this work is to characterize and identify key intermediate radicals and their reaction pathways in the liquid phase, gas phase, and at the interface of these aerosol droplets and thin film surfaces using various gases and liquid feeds. / A Dissertation submitted to the Department of Chemical and Biomedical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy. / Spring Semester, 2015. / March 17, 2015. / advanced oxidation processes, electrical discharge, Fenton reaction, hydrogen peroxide, hydroxyl radical, plasma / Includes bibliographical references. / Bruce R. Locke, Professor Directing Dissertation; Igor Alabugin, University Representative; Ravindran Chella, Committee Member; Rufina Alamo, Committee Member.

Identiferoai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_253455
ContributorsHsieh, Kevin, 1983- (authoraut), Locke, Bruce R. (professor directing dissertation), Alabugin, Igor V. (university representative), Chella, Ravindran (committee member), Alamo, Rufina G. (committee member), Florida State University (degree granting institution), College of Engineering (degree granting college), Department of Chemical and Biomedical Engineering (degree granting department)
PublisherFlorida State University, Florida State University
Source SetsFlorida State University
LanguageEnglish, English
Detected LanguageEnglish
TypeText, text
Format1 online resource (191 pages), computer, application/pdf
RightsThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.

Page generated in 0.0191 seconds